Geographic data science with Python /

Saved in:
Bibliographic Details
Author / Creator:Rey, Sergio J. (Sergio Joseph), author.
Imprint:Boca Raton, FL : CRC Press, 2023.
©2023
Description:xxxii, 378 pages : illustrations (chiefly color), color maps ; 24 cm.
Language:English
Series:Chapman & Hall/CRC texts in statistical science
Texts in statistical science.
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/13302930
Hidden Bibliographic Details
Other authors / contributors:Arribas-Bel, Dani, author.
Wolf, Levi John, author.
ISBN:9780367263119
0367263114
9781032445953
1032445955
9780429292507
9781000885279
Notes:Includes bibliographical references and index.
Summary:"This book provides the tools, the methods, and the theory to meet the challenges of contemporary data science applied to geographic problems and data. In the new world of pervasive, large, frequent, and rapid data, there are new opportunities to understand and analyze the role of geography in everyday life. Geographic Data Science with Python introduces a new way of thinking about analysis. Using geographical and computational reasoning, it shows the reader how to unlock new insights hidden within data. The book is structured around the excellent data science environment available in Python, providing examples and worked analyses for the reader to replicate, adapt, extend, and improve. This book codifies what a geographic data scientist does, and covers the crucial knowledge that these scientists need. It presents concepts in a far more geographic way than competing textbooks, covering spatial data, mapping and spatial statistics whilst covering concepts, such as clusters and outliers, as geographic concepts. This book intends to show that these concepts are fundamental to both data science and geographic data science, and any differences in language and framing is superficial. Intended for data scientists, GIScientists and geographers, the material provided in this book will be of interest due to the manner in which it presents geospatial data, methods, tools and practices that this new field presents, and its intention to create collaboration between the communities of data science and geography"--
Other form:Online version: Rey, Sergio J. (Sergio Joseph). Geographic data science with Python Boca Raton : CRC Press, 2023 9780429292507

MARC

LEADER 00000cam a2200000 i 4500
001 13302930
008 230204t20232023fluab b 001 0 eng
005 20231114203707.0
010 |a  2022056545 
035 |a (OCoLC)on1355435034 
040 |a LBSOR  |b eng  |e rda  |c DLC  |d OCLCF  |d YDX  |d OCLCO 
020 |a 9780367263119  |q hardcover 
020 |a 0367263114  |q hardcover 
020 |a 9781032445953  |q paperback 
020 |a 1032445955  |q paperback 
020 |z 9780429292507  |q electronic book 
020 |z 9781000885279  |q electronic book 
035 |a (OCoLC)1355435034 
042 |a pcc 
050 0 0 |a G70.217.G46  |b R49 2023 
082 0 0 |a 910.285/5133  |2 23/eng20230506 
100 1 |a Rey, Sergio J.  |q (Sergio Joseph),  |e author. 
245 1 0 |a Geographic data science with Python /  |c by Sergio Rey, Dani Arribas-Bel and Levi John Wolf. 
264 1 |a Boca Raton, FL :  |b CRC Press,  |c 2023. 
264 4 |c ©2023 
300 |a xxxii, 378 pages :  |b illustrations (chiefly color), color maps ;  |c 24 cm. 
336 |a text  |b txt  |2 rdacontent 
337 |a unmediated  |b n  |2 rdamedia 
338 |a volume  |b nc  |2 rdacarrier 
490 1 |a Chapman & Hall/CRC texts in statistical science 
520 |a "This book provides the tools, the methods, and the theory to meet the challenges of contemporary data science applied to geographic problems and data. In the new world of pervasive, large, frequent, and rapid data, there are new opportunities to understand and analyze the role of geography in everyday life. Geographic Data Science with Python introduces a new way of thinking about analysis. Using geographical and computational reasoning, it shows the reader how to unlock new insights hidden within data. The book is structured around the excellent data science environment available in Python, providing examples and worked analyses for the reader to replicate, adapt, extend, and improve. This book codifies what a geographic data scientist does, and covers the crucial knowledge that these scientists need. It presents concepts in a far more geographic way than competing textbooks, covering spatial data, mapping and spatial statistics whilst covering concepts, such as clusters and outliers, as geographic concepts. This book intends to show that these concepts are fundamental to both data science and geographic data science, and any differences in language and framing is superficial. Intended for data scientists, GIScientists and geographers, the material provided in this book will be of interest due to the manner in which it presents geospatial data, methods, tools and practices that this new field presents, and its intention to create collaboration between the communities of data science and geography"--  |c Provided by publisher. 
504 |a Includes bibliographical references and index. 
505 0 |a Geographic thinking for data scientists -- Computational tools for geographic data science -- Spatial data -- Spatial weights -- Choropleth mapping -- Global spatial autocorrelation -- Local spatial autocorrelation -- Point pattern analysis -- Spatial inequality dynamics -- Clustering & regionalization -- Spatial regression -- Spatial feature engineering. 
650 0 |a Geospatial data  |x Computer processing. 
650 0 |a Python (Computer program language) 
650 6 |a Données géospatiales  |x Informatique. 
650 6 |a Python (Langage de programmation) 
650 7 |a Geospatial data  |x Computer processing  |2 fast 
650 7 |a Python (Computer program language)  |2 fast 
700 1 |a Arribas-Bel, Dani,  |e author. 
700 1 |a Wolf, Levi John,  |e author. 
776 0 8 |i Online version:  |a Rey, Sergio J. (Sergio Joseph).  |t Geographic data science with Python  |d Boca Raton : CRC Press, 2023  |z 9780429292507  |w (DLC) 2022056546 
830 0 |a Texts in statistical science. 
929 |a cat 
999 f f |s 74c38fc7-dd72-4ca2-8133-ea57ef318401  |i dd5d5259-d477-4839-bde4-a001db5ffdcf 
928 |t Library of Congress classification  |a G70.217.G46 R49 2023  |l JRL  |c JRL-Gen  |i 13443639 
927 |t Library of Congress classification  |a G70.217.G46 R49 2023  |l JRL  |c JRL-Gen  |e JEBL  |b 118689128  |i 10666342