Random walks and heat kernels on graphs /

Saved in:
Bibliographic Details
Author / Creator:Barlow, M. T.
Imprint:©2017
Cambridge : Cambridge University Press, [2017]
Description:1 online resource
Language:English
Series:London Mathematical Society lecture note series ; 438
London Mathematical Society lecture note series ; 438.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/13454746
Hidden Bibliographic Details
ISBN:9781108125604
1108125603
9781107674424
1107674425
9781107415690
1107415691
Notes:Includes bibliographical references and index.
Print version record.
Summary:This introduction to random walks on infinite graphs gives particular emphasis to graphs with polynomial volume growth. It offers an overview of analytic methods, starting with the connection between random walks and electrical resistance, and then proceeding to study the use of isoperimetric and Poincar inequalities. The book presents rough isometries and looks at the properties of a graph that are stable under these transformations. Applications include the 'type problem': determining whether a graph is transient or recurrent. The final chapters show how geometric properties of the graph can be used to establish heat kernel bounds, that is, bounds on the transition probabilities of the random walk, and it is proved that Gaussian bounds hold for graphs that are roughly isometric to Euclidean space. Aimed at graduate students in mathematics, the book is also useful for researchers as a reference for results that are hard to find elsewhere.
Other form:Print version: Barlow, M.T. Random walks and heat kernels on graphs. Cambridge : Cambridge University Press, [2017] 9781107674424
Standard no.:40026971296

MARC

LEADER 00000cam a2200000 i 4500
001 13454746
006 m o d
007 cr cnu---unuuu
008 170309s2017 enk ob 001 0 eng d
005 20240415220518.4
035 |a (OCoLC)974915390  |z (OCoLC)983730400  |z (OCoLC)1006301345  |z (OCoLC)1019993259  |z (OCoLC)1090984817  |z (OCoLC)1167244796 
035 9 |a (OCLCCM-CC)974915390 
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d YDX  |d IDEBK  |d EBLCP  |d MERUC  |d UIU  |d UMI  |d COO  |d TOH  |d UAB  |d VGM  |d OTZ  |d MERER  |d OCLCQ  |d CASUM  |d OCLCQ  |d OCLCO  |d OCLCA  |d U3W  |d OCLCA  |d NRC  |d OCLCQ  |d UOK  |d CEF  |d NOC  |d KSU  |d VT2  |d WYU  |d C6I  |d U3G  |d OL$  |d OCLCO  |d OCLCQ  |d OCLCA  |d OCLCQ  |d K6U  |d OCLCO  |d UKAHL  |d OCLCQ  |d OCLCO 
066 |c (S 
019 |a 983730400  |a 1006301345  |a 1019993259  |a 1090984817  |a 1167244796 
020 |a 9781108125604  |q (electronic bk.) 
020 |a 1108125603  |q (electronic bk.) 
020 |z 9781107674424 
020 |z 1107674425 
020 |a 9781107415690 
020 |a 1107415691 
024 8 |a 40026971296 
037 |a CL0500000851  |b Safari Books Online 
050 4 |a QA274.73  |b .B3735 2017eb 
072 7 |a MAT  |x 000000  |2 bisacsh 
049 |a MAIN 
100 1 |a Barlow, M. T. 
245 1 0 |a Random walks and heat kernels on graphs /  |c Martin T. Barlow, University of British Columbia, Canada. 
264 4 |c ©2017 
264 1 |a Cambridge :  |b Cambridge University Press,  |c [2017] 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a London Mathematical Society lecture note series ;  |v 438 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
505 0 |a Cover; Series page; Title page; Copyright page; Dedication; Contents; Preface; 1 Introduction; 1.1 Graphs and Weighted Graphs; 1.2 Random Walks on a Weighted Graph; 1.3 Transition Densities and the Laplacian; 1.4 Dirichlet or Energy Form; 1.5 Killed Process; 1.6 Green's Functions; 1.7 Harmonic Functions, Harnack Inequalities, and the Liouville Property; 1.8 Strong Liouville Property for R[sup(d)]; 1.9 Interpretation of the Liouville Property; 2 Random Walks and Electrical Resistance; 2.1 Basic Concepts; 2.2 Transience and Recurrence; 2.3 Energy and Variational Methods 
505 8 |a 2.4 Resistance to Infinity2.5 Traces and Electrical Equivalence; 2.6 Stability under Rough Isometries; 2.7 Hitting Times and Resistance; 2.8 Examples; 2.9 The Sierpinski Gasket Graph; 3 Isoperimetric Inequalities and Applications; 3.1 Isoperimetric Inequalities; 3.2 Nash Inequality; 3.3 Poincaré Inequality; 3.4 Spectral Decomposition for a Finite Graph; 3.5 Strong Isoperimetric Inequality and Spectral Radius; 4 Discrete Time Heat Kernel; 4.1 Basic Properties and Bounds on the Diagonal; 4.2 Carne-Varopoulos Bound; 4.3 Gaussian and Sub-Gaussian Heat Kernel Bounds; 4.4 Off-diagonal Upper Bounds 
505 8 |a A.6 Miscellaneous EstimatesA. 7 Whitney Type Coverings of a Ball; A.8 A Maximal Inequality; A.9 Poincaré Inequalities; References; Index 
520 |a This introduction to random walks on infinite graphs gives particular emphasis to graphs with polynomial volume growth. It offers an overview of analytic methods, starting with the connection between random walks and electrical resistance, and then proceeding to study the use of isoperimetric and Poincar inequalities. The book presents rough isometries and looks at the properties of a graph that are stable under these transformations. Applications include the 'type problem': determining whether a graph is transient or recurrent. The final chapters show how geometric properties of the graph can be used to establish heat kernel bounds, that is, bounds on the transition probabilities of the random walk, and it is proved that Gaussian bounds hold for graphs that are roughly isometric to Euclidean space. Aimed at graduate students in mathematics, the book is also useful for researchers as a reference for results that are hard to find elsewhere. 
650 0 |a Random walks (Mathematics)  |0 http://id.loc.gov/authorities/subjects/sh85111357 
650 0 |a Graph theory.  |0 http://id.loc.gov/authorities/subjects/sh85056471 
650 0 |a Markov processes.  |0 http://id.loc.gov/authorities/subjects/sh85081369 
650 0 |a Heat equation.  |0 http://id.loc.gov/authorities/subjects/sh85059782 
650 0 |a Mathematics.  |0 http://id.loc.gov/authorities/subjects/sh85082139 
650 1 2 |a Markov Chains 
650 1 2 |a Mathematics 
650 6 |a Marches aléatoires (Mathématiques) 
650 6 |a Processus de Markov. 
650 6 |a Équation de la chaleur. 
650 6 |a Mathématiques. 
650 7 |a MATHEMATICS  |x General.  |2 bisacsh 
650 7 |a Graph theory.  |2 fast  |0 (OCoLC)fst00946584 
650 7 |a Heat equation.  |2 fast  |0 (OCoLC)fst00953865 
650 7 |a Markov processes.  |2 fast  |0 (OCoLC)fst01010347 
650 7 |a Random walks (Mathematics)  |2 fast  |0 (OCoLC)fst01089818 
655 4 |a Electronic books. 
776 0 8 |i Print version:  |a Barlow, M.T.  |t Random walks and heat kernels on graphs.  |d Cambridge : Cambridge University Press, [2017]  |z 9781107674424  |w (DLC) 2016051295  |w (OCoLC)958098175 
830 0 |a London Mathematical Society lecture note series ;  |v 438. 
856 4 0 |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=e000xna&AN=1458586  |y eBooks on EBSCOhost 
880 8 |6 505-00/(S  |a 4.5 Lower Bounds5 Continuous Time Random Walks; 5.1 Introduction to Continuous Time; 5.2 Heat Kernel Bounds; 6 Heat Kernel Bounds; 6.1 Strongly Recurrent Graphs; 6.2 Gaussian Upper Bounds; 6.3 Poincaré Inequality and Gaussian Lower Bounds; 6.4 Remarks on Gaussian Bounds; 7 Potential Theory and Harnack Inequalities; 7.1 Introduction to Potential Theory; 7.2 Applications; Appendix; A.1 Martingales and Tail Estimates; A.2 Discrete Time Markov Chains and the Strong Markov Property; A.3 Continuous Time Random Walk; A.4 Invariant and Tail σ-fields; A.5 Hilbert Space Results 
929 |a oclccm 
999 f f |s 9921890a-b9d7-415a-b50d-3b77be9a46e3  |i c9bb8b6d-7e81-443a-8ce3-30aec57ea169 
928 |t Library of Congress classification  |a QA274.73.B3735 2017eb  |l Online  |c UC-FullText  |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=e000xna&AN=1458586  |z eBooks on EBSCOhost  |g ebooks  |i 13596410