Rarefied Gas Flows and Dynamic Plasma Phenomena in Electric Propulsion Systems.

Saved in:
Bibliographic Details
Author / Creator:Gomez Herrera, Juan Esteban.
Imprint:Göttingen : Cuvillier Verlag, 2020.
Description:1 online resource (369 p.)
Language:English
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/13585995
Hidden Bibliographic Details
ISBN:3736963246
9783736963245
Notes:Description based upon print version of record.
6.3 Particle and force weighting.
Other form:Print version: Gomez Herrera, Juan Esteban Rarefied Gas Flows and Dynamic Plasma Phenomena in Electric Propulsion Systems Göttingen : Cuvillier Verlag,c2020 9783736973244

MARC

LEADER 00000cam a2200000Mu 4500
001 13585995
006 m o d
007 cr cnu---unuuu
008 210116s2020 gw o ||| 0 eng d
005 20241122143903.6
035 |a (OCoLC)1231608245  |z (OCoLC)1231522113 
035 9 |a (OCLCCM-CC)1231608245 
040 |a EBLCP  |b eng  |c EBLCP  |d YDX  |d N$T  |d OCLCO  |d OCLCF  |d OCLCQ 
019 |a 1231522113 
020 |a 3736963246 
020 |a 9783736963245  |q (electronic bk.) 
050 4 |a TL709 
049 |a MAIN 
100 1 |a Gomez Herrera, Juan Esteban. 
245 1 0 |a Rarefied Gas Flows and Dynamic Plasma Phenomena in Electric Propulsion Systems. 
260 |a Göttingen :  |b Cuvillier Verlag,  |c 2020. 
300 |a 1 online resource (369 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Description based upon print version of record. 
505 0 |a Intro -- Chapter 1 Introduction -- 1.1 Motivation -- 1.2 Basic setup -- 1.3 Goals and thesis outline -- Chapter 2 Theoretical Principles -- 2.1 Knudsen number and flow regimes -- 2.2 Lagrangian and Eulerian specification of the flowfield -- 2.3 Conservation of mass -- 2.4 Conservation of momentum -- 2.5 Conservation of energy -- 2.6 Ideal gas -- 2.7 The Laval nozzle -- 2.8 Fundamentals of plasma -- 2.8.1 Physical properties of plasma -- 2.9 Kinetic theory of gases -- 2.9.1 Fundamental concepts -- 2.9.2 Velocity distribution function and macroscopic properties -- 2.9.3 Maxwell distribution 
505 8 |a 2.9.4 Boltzmann equation -- 2.10 Summary -- Chapter 3 Computational Methods -- 3.1 Methods based on transport equations -- 3.1.1 Finite Difference Method -- 3.1.2 Finite Volume Method -- 3.1.3 Methods for unsteady problems -- 3.1.4 Solution algorithms for the Navier-Stokes equations -- 3.2 Direct Simulation Monte Carlo (DSMC) -- 3.2.1 Molecular transport -- 3.2.2 Molecular collisions -- 3.2.3 Implementation of boundary conditions -- 3.2.4 Macroscopic properties -- 3.3 Particle-In-Cell Method (PIC) -- 3.3.1 Particle motion -- Lorentz solver -- 3.3.2 Field equations -- Maxwell solver 
505 8 |a 3.3.3 Particle and force weighting -- 3.4 Summary -- Chapter 4 Transonic Gas Flows AcrossMultiple Flow Regimes -- 4.1 State of the art and previous studies -- 4.2 Experimental setup -- 4.2.1 Vacuum and measurement systems -- 4.2.2 Arcjet thruster and Laval nozzle -- 4.2.3 Experimental series -- 4.3 Numerical setup -- 4.3.1 Solved equations and numerical solver -- 4.3.2 Numerical mesh and boundary conditions -- 4.3.3 Numerical setup for DSMC simulations -- 4.4 Results and discussion -- 4.4.1 Experimental results -- 4.4.2 Navier-Stokes simulations -- 4.4.3 DSMC results 
505 8 |a 4.4.4 Comparison between Navier-Stokes and experimental results -- 4.4.5 Knudsen-dependent correcting function for the dimensionlesspressure drop -- 4.4.6 Molar mass dependency of the Knudsen function coefficients -- 4.4.7 Thrust and specific impulse -- 4.5 Summary -- Chapter 5 Development of a Kinetic PlasmaModel for Electric PropulsionSystems -- 5.1 Electric propulsion systems for spacecraft -- 5.2 State of the art and previous works -- 5.2.1 Resistojets -- 5.2.2 Arcjet thrusters -- 5.2.3 Ion thrusters -- 5.2.4 Hall thrusters -- 5.3 Development of a kinetic plasma model 
505 8 |a 5.3.1 General modelling concept -- 5.3.2 Basis DSMC solver -- 5.3.3 Implementation of PIC algorithm -- 5.3.4 Coulomb collisions with the MCC algorithm -- 5.3.5 Electron-neutral collisions -- 5.3.6 Recombination -- 5.3.7 Boundary conditions in dsmcPlasmaFoam -- 5.3.8 Numerical aspects -- 5.3.9 Global model implementation in OpenFOAM -- 5.4 Summary -- Chapter 6 Validation of dsmcPlasmaFoam -- 6.1 Maxwell solver -- 6.2 Lorentz solver -- 6.2.1 Solver behaviour without implementation of the Leapfrog algorithm -- 6.2.2 Solver behaviour with implemented Leapfrog algorithm 
500 |a 6.3 Particle and force weighting. 
650 0 |a Propulsion systems.  |0 http://id.loc.gov/authorities/subjects/sh2003010905 
650 0 |a Jet propulsion.  |0 http://id.loc.gov/authorities/subjects/sh85070170 
650 0 |a Space launch industry.  |0 http://id.loc.gov/authorities/subjects/sh2002002046 
650 6 |a Systèmes de propulsion. 
650 6 |a Propulsion par réaction. 
650 6 |a Véhicules spatiaux  |x Lancement  |x Industrie. 
650 7 |a Jet propulsion.  |2 fast  |0 (OCoLC)fst00982458 
650 7 |a Propulsion systems.  |2 fast  |0 (OCoLC)fst01079285 
650 7 |a Space launch industry.  |2 fast  |0 (OCoLC)fst01127757 
776 0 8 |i Print version:  |a Gomez Herrera, Juan Esteban  |t Rarefied Gas Flows and Dynamic Plasma Phenomena in Electric Propulsion Systems  |d Göttingen : Cuvillier Verlag,c2020  |z 9783736973244 
856 4 0 |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=e000xna&AN=2728393  |y eBooks on EBSCOhost 
929 |a oclccm 
999 f f |i ce35d697-d0a8-4998-9037-4e2c842fa8b2  |s 44e420f8-19a0-41ab-9210-b909fa879635 
928 |t Library of Congress classification  |a TL709  |l Online  |c UC-FullText  |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=e000xna&AN=2728393  |z eBooks on EBSCOhost  |g ebooks  |i 13728928