Propagators in quantum chemistry /

Saved in:
Bibliographic Details
Author / Creator:Linderberg, Jan.
Edition:2nd ed.
Imprint:Hoboken, N.J. : John Wiley & Sons, ©2004.
Description:1 online resource (267 pages) : illustrations
Language:English
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/13591931
Hidden Bibliographic Details
Other authors / contributors:Öhrn, Yngve.
ISBN:0471662577
9780471662570
0471721549
9780471721543
128055696X
9781280556968
9786610556960
6610556962
0471721530
9780471721536
Digital file characteristics:text file
Notes:Includes bibliographical references and index.
English.
Print version record.
Summary:The only authoritative reference source on the propagator concept, now thoroughly revised and updated Much has changed in the study of quantum and theoretical chemistry since the publication of the first edition of Propagators in Quantum Chemistry. Advances in computer power and software packages now make it possible to calculate molecular structure, properties, spectra, and reactivity with greater predictive power. Chemical processes, especially under conditions not readily available in the laboratory, can also be much more easily studied via theory and computations. In this environment, the.
Other form:Print version: Linderberg, Jan. Propagators in quantum chemistry. 2nd ed. Hoboken, N.J. : John Wiley & Sons, ©2004 0471662577
Standard no.:10.1002/0471721549
9780471662570
Table of Contents:
  • 1. Introduction
  • 2. Differential Equations
  • 3. Propagators and Second Quantization
  • 3.1. The Huckel Model
  • 3.2. Electron Field Operators
  • 3.3. Angular Momentum
  • 4. Double-Time Green's Functions
  • 4.1. The Electron Propagator
  • 4.2. Electrons in a Central Potential
  • 4.2.1. Electron Propagator
  • 4.2.2. The WKB Propagator
  • 4.3. The Atomic Central Field Problem
  • 4.3.1. Electron Propagator
  • 4.3.2. Hartree-Fock Equations
  • 4.4. Complex Spectra
  • 4.5. Single Subshell Approximation
  • 4.6. Approximate Atomic Transition Amplitudes
  • 4.6.1. The Hydrogen Atom
  • 4.6.2. The Carbon and Nitrogen Atoms
  • 5. The Excitation Propagator
  • 5.1. Antisymmetrized Geminal Power
  • 6. Interaction of Radiation and Matter
  • 6.1. A Charged Particle in an Electromagnetic Field
  • 6.2. Quantization of the Radiation Field
  • 6.3. Absorption Spectroscopy
  • 6.4. RPA Transition Moments
  • 6.5. Optical Rotatory Dispersion and Circular Dichroism
  • 7. Temperature-Dependent Theory
  • 8. Molecules in Magnetic Fields
  • 8.1. Nuclear Spins
  • 8.2. Magnetic Susceptibility
  • 8.3. NMR-Spectra
  • 8.3.1. Indirect Nuclear Spin-Spin Coupling Constants
  • 8.4. Magnetic Properties of Molecules
  • 8.5. Diamagnetic Molecules
  • 8.6. Units and Magnitude of Magnetic Susceptibilities
  • 8.7. Paramagnetic Molecules
  • 8.8. NMR Spectra and Shielding
  • 8.9. NMR Spectra and Spin-Spin Coupling
  • 8.10. The Origin Problem
  • 8.11. The Gauge Problem
  • 8.11.1. Calculation of Magnetic Properties
  • 8.12. An Elementary Example of NMR Spectra
  • 8.13. Paramagnetic Molecules
  • 9. Electron Propagator in Higher Orders
  • 9.1. Renormalization of the Electron Propagator
  • 9.1.1. The 2p-h TDA and the Diagonal 2p-h TDA Self-Energy
  • 9.2. Partitioning and Inner Projections
  • 9.2.1. Method of Solution
  • 9.2.2. A Possible Algorithm
  • 9.2.3. Order Analysis of the Propagator Matrices
  • 9.3. Recipe for Diagrams
  • 9.3.1. Step 1
  • 9.3.2. Step 2
  • 9.3.3. Step 3
  • 9.3.4. Step 4
  • 9.3.5. Remarks
  • 9.4. Photoelectron Spectra
  • 9.5. Photoionization Cross Sections
  • 10. Atomic and Molecular Orbitals
  • 10.1. Nonorthogonal Basis Sets
  • 10.2. Green's Function Considerations
  • 10.3. A Simple Model Hamiltonian
  • 10.4. Electronic Indices from Green's Functions
  • 10.5. Orthogonalized Atomic Orbitals
  • 11. The Pariser-Parr-Pople Model
  • 11.1. Introduction
  • 11.2. Reduction to the Pariser-Parr-Pople Model
  • 11.3. Limit of Separated Atoms
  • 11.4. Interacting Atoms
  • 11.5. Calculation of Expectation Values
  • 11.6. Application to Linear Chains
  • 12. Excitation Propagator in Higher Orders
  • 12.1. Auger Spectroscopy
  • 13. Propagators and Chemical Reaction Rate
  • A. Complex Calculus Primer
  • A.1. Continuity
  • A.2. Differentiability
  • A.3. Analytic Functions
  • A.4. Complex Integration
  • A.5. Cauchy's Theorem
  • A.5.1. Cauchy's Integral
  • A.6. Laurent Series
  • A.7. Isolated Singularities
  • A.8. Residue at a Singularity
  • A.9. Expansion of a Meromorphic Function
  • B. First and Second Quantization
  • C. Stability of Hartree-Fock Solutions
  • D. Third-Order Self-Energy
  • E. Temperature-Dependent Propagators
  • E.1. Preliminaries
  • E.1.1. Intermezzo
  • E.1.2. Electron Field Operators
  • E.2. Wick's Theorem
  • E.3. Diagrams
  • E.3.1. Disconnected Diagrams
  • E.3.2. Propagator Diagram Rules
  • E.3.3. Fourier Transform
  • F. The Eckart Potential and its Propagator
  • Index