Probabilistic methods for bioinformatics : with an introduction to Bayesian networks /

Saved in:
Bibliographic Details
Author / Creator:Neapolitan, Richard E.
Imprint:Amsterdam ; Boston : Morgan Kaufmann/Elsevier, [2009]
©2009
Description:1 online resource (xii, 406 pages) : illustrations
Language:English
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/13595285
Hidden Bibliographic Details
ISBN:9780080919362
0080919367
1282168428
9781282168428
9786612168420
6612168420
9780123704764
0123704766
Notes:Includes bibliographical references (pages 387-399) and index.
English.
Print version record.
Summary:"The Bayesian network is one of the most important architectures for representing and reasoning with multivariate probability distributions. When used in conjunction with specialized informatics, possibilities of real-world applications are achieved. Probabilistic Methods for BioInformatics explains the application of probability and statistics, in particular Bayesian networks, to genetics. This book provides background material on probability, statistics, and genetics, and then moves on to discuss Bayesian networks and applications to bioinformatics. Rather than getting bogged down in proofs and algorithms, probabilistic methods used for biological information and Bayesian networks are explained in an accessible way using applications and case studies. The many useful applications of Bayesian networks that have been developed in the past 10 years are discussed. Forming a review of all the significant work in the field that will arguably become the most prevalent method in biological data analysis. Unique coverage of probabilistic reasoning methods applied to bioinformatics data--those methods that are likely to become the standard analysis tools for bioinformatics. Shares insights about when and why probabilistic methods can and cannot be used effectively; Complete review of Bayesian networks and probabilistic methods with a practical approach."
Other form:Print version: Neapolitan, Richard E. Probabilistic methods for bioinformatics. Amsterdam ; Boston : Morgan Kaufmann/Elsevier, ©2009 9780123704764

MARC

LEADER 00000cam a2200000 i 4500
001 13595285
006 m o d
007 cr cnu---unuuu
008 090810t20092009ne a ob 001 0 eng d
005 20241126151602.6
016 7 |a 017593133  |2 Uk 
019 |a 466444008  |a 742294457  |a 815781897  |a 823120988  |a 990523215  |a 1066626770  |a 1103281162  |a 1162202357 
020 |a 9780080919362  |q (electronic bk.) 
020 |a 0080919367  |q (electronic bk.) 
020 |a 1282168428 
020 |a 9781282168428 
020 |a 9786612168420 
020 |a 6612168420 
020 |z 9780123704764 
020 |z 0123704766  |q (alk. paper) 
035 9 |a (OCLCCM-CC)429896566 
035 |a (OCoLC)429896566  |z (OCoLC)466444008  |z (OCoLC)742294457  |z (OCoLC)815781897  |z (OCoLC)823120988  |z (OCoLC)990523215  |z (OCoLC)1066626770  |z (OCoLC)1103281162  |z (OCoLC)1162202357 
037 |a 9780080919362  |b Ingram Content Group 
040 |a OPELS  |b eng  |e pn  |c OPELS  |d CDX  |d N$T  |d OPELS  |d UAB  |d YDXCP  |d OCLCQ  |d EBLCP  |d IDEBK  |d OCLCQ  |d OPELS  |d OCLCQ  |d OCLCF  |d OCLCQ  |d DEBSZ  |d MERUC  |d UKDOC  |d OCLCQ  |d USU  |d LIP  |d OCLCQ  |d ORE  |d D6H  |d NLE  |d OCLCQ  |d UKMGB  |d WYU  |d OCLCQ  |d LEAUB  |d OL$  |d VT2  |d OCLCQ  |d VLY  |d S2H  |d OCLCO  |d OCL  |d OCLCQ  |d OCLCO  |d OCLCL 
049 |a MAIN 
050 4 |a QH324.2  |b .N43 2009eb 
060 4 |a QH324.2  |b .N43 2009 
072 7 |a COM  |x 082000  |2 bisacsh 
100 1 |a Neapolitan, Richard E.  |0 http://id.loc.gov/authorities/names/n88268942 
245 1 0 |a Probabilistic methods for bioinformatics :  |b with an introduction to Bayesian networks /  |c Richard E. Neapolitan. 
264 1 |a Amsterdam ;  |a Boston :  |b Morgan Kaufmann/Elsevier,  |c [2009] 
264 4 |c ©2009 
300 |a 1 online resource (xii, 406 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a "The Bayesian network is one of the most important architectures for representing and reasoning with multivariate probability distributions. When used in conjunction with specialized informatics, possibilities of real-world applications are achieved. Probabilistic Methods for BioInformatics explains the application of probability and statistics, in particular Bayesian networks, to genetics. This book provides background material on probability, statistics, and genetics, and then moves on to discuss Bayesian networks and applications to bioinformatics. Rather than getting bogged down in proofs and algorithms, probabilistic methods used for biological information and Bayesian networks are explained in an accessible way using applications and case studies. The many useful applications of Bayesian networks that have been developed in the past 10 years are discussed. Forming a review of all the significant work in the field that will arguably become the most prevalent method in biological data analysis. Unique coverage of probabilistic reasoning methods applied to bioinformatics data--those methods that are likely to become the standard analysis tools for bioinformatics. Shares insights about when and why probabilistic methods can and cannot be used effectively; Complete review of Bayesian networks and probabilistic methods with a practical approach." 
504 |a Includes bibliographical references (pages 387-399) and index. 
505 0 |a I: Informatics and Baysesian Networks; Introduction to Informatics; Basics of Probability and Statistics; Algorithms for Bayesian Networks; Decision Trees and Influence Diagrams. II Bioinformatics: Background; Applications to Molecular Phylogenetics; Gene Linkage Analysis; Analyzing Gene Expression Data; and more. 
588 0 |a Print version record. 
546 |a English. 
650 0 |a Bioinformatics.  |0 http://id.loc.gov/authorities/subjects/sh00003585 
650 0 |a Bayesian statistical decision theory.  |0 http://id.loc.gov/authorities/subjects/sh85012506 
650 0 |a Probabilities.  |0 http://id.loc.gov/authorities/subjects/sh85107090 
650 0 |a Computational biology.  |0 http://id.loc.gov/authorities/subjects/sh2003008355 
650 2 |a Computational Biology  |0 https://id.nlm.nih.gov/mesh/D019295 
650 2 |a Probability  |0 https://id.nlm.nih.gov/mesh/D011336 
650 6 |a Bio-informatique. 
650 6 |a Théorie de la décision bayésienne. 
650 6 |a Probabilités. 
650 7 |a probability.  |2 aat 
650 7 |a COMPUTERS  |x Bioinformatics.  |2 bisacsh 
650 7 |a Computational biology  |2 fast 
650 7 |a Bayesian statistical decision theory  |2 fast 
650 7 |a Bioinformatics  |2 fast 
650 7 |a Probabilities  |2 fast 
758 |i has work:  |a Probabilistic methods for bioinformatics (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGtHrpgQHBvgwj3cKhBKFq  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Neapolitan, Richard E.  |t Probabilistic methods for bioinformatics.  |d Amsterdam ; Boston : Morgan Kaufmann/Elsevier, ©2009  |z 9780123704764  |w (OCoLC)429896566 
856 4 0 |u https://go.oreilly.com/uchicago/library/view/-/9780123704764/?ar  |y O'Reilly 
929 |a oclccm 
999 f f |s 8ea5118f-a14f-42e9-b9c1-0a82eb4c4483  |i 65f443bb-0780-4341-a21d-e84820e65066 
928 |t Library of Congress classification  |a QH324.2.N43 2009eb  |l Online  |c UC-FullText  |u https://go.oreilly.com/uchicago/library/view/-/9780123704764/?ar  |z O'Reilly  |g ebooks  |i 13738226