Bayesian signal processing : classical, modern, and particle filtering methods /
Saved in:
Author / Creator: | Candy, James V. |
---|---|
Imprint: | Hoboken, N.J. : Wiley : IEEE, [2009] ©2009 |
Description: | 1 online resource (xxiii, 445 pages) : illustrations, map |
Language: | English |
Series: | Adaptive and learning systems for signal processing, communications, and control Adaptive and learning systems for signal processing, communications, and control. |
Subject: | |
Format: | E-Resource Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/13595719 |
Table of Contents:
- Preface
- References
- Acknowledgments
- 1. Introduction
- 1.1. Introduction
- 1.2. Bayesian Signal Processing
- 1.3. Simulation-Based Approach to Bayesian Processing
- 1.4. Bayesian Model-Based Signal Processing
- 1.5. Notation and Terminology
- References
- Problems
- 2. Bayesian Estimation
- 2.1. Introduction
- 2.2. Batch Bayesian Estimation
- 2.3. Batch Maximum Likelihood Estimation
- 2.4. Batch Minimum Variance Estimation
- 2.5. Sequential Bayesian Estimation
- 2.6. Summary
- References
- Problems
- 3. Simulation-Based Bayesian Methods
- 3.1. Introduction
- 3.2. Probability Density Function Estimation
- 3.3. Sampling Theory
- 3.4. Monte Carlo Approach
- 3.5. Importance Sampling
- 3.6. Sequential Importance Sampling
- 3.7. Summary
- References
- Problems
- 4. State-Space Models for Bayesian Processing
- 4.1. Introduction
- 4.2. Continuous-Time State-Space Models
- 4.3. Sampled-Data State-Space Models
- 4.4. Discrete-Time State-Space Models
- 4.5. Gauss-Markov State-Space Models
- 4.6. Innovations Model
- 4.7. State-Space Model Structures
- 4.8. Nonlinear (Approximate) Gauss-Markov State-Space Models
- 4.9. Summary
- References
- Problems
- 5. Classical Bayesian State-Space Processors
- 5.1. Introduction
- 5.2. Bayesian Approach to the State-Space
- 5.3. Linear Bayesian Processor (Linear Kalman Filter)
- 5.4. Linearized Bayesian Processor (Linearized Kalman Filter)
- 5.5. Extended Bayesian Processor (Extended Kalman Filter)
- 5.6. Iterated-Extended Bayesian Processor (Iterated-Extended Kalman Filter)
- 5.7. Practical Aspects of Classical Bayesian Processors
- 5.8. Case Study: RLC Circuit Problem
- 5.9. Summary
- References
- Problems
- 6. Modern Bayesian State-Space Processors
- 6.1. Introduction
- 6.2. Sigma-Point (Unscented) Transformations
- 6.3. Sigma-Point Bayesian Processor (Unscented Kalman Filter)
- 6.4. Quadrature Bayesian Processors
- 6.5. Gaussian Sum (Mixture) Bayesian Processors
- 6.6. Case Study: 2D-Tracking Problem
- 6.7. Summary
- References
- Problems
- 7. Particle-Based Bayesian State-Space Processors
- 7.1. Introduction
- 7.2. Bayesian State-Space Particle Filters
- 7.3. Importance Proposal Distributions
- 7.4. Resampling
- 7.5. State-Space Particle Filtering Techniques
- 7.6. Practical Aspects of Particle Filter Design
- 7.7. Case Study: Population Growth Problem
- 7.8. Summary
- References
- Problems
- 8. Joint Bayesian State/Parametric Processors
- 8.1. Introduction
- 8.2. Bayesian Approach to Joint State/Parameter Estimation
- 8.3. Classical/Modern Joint Bayesian State/Parametric Processors
- 8.3.1. Classical Joint Bayesian Processor
- 8.3.2. Modern Joint Bayesian Processor
- 8.4. Particle-Based Joint Bayesian State/Parametric Processors
- 8.5. Case Study: Random Target Tracking using a Synthetic Aperture Towed Array
- 8.6. Summary
- References
- Problems
- 9. Discrete Hidden Markov Model Bayesian Processors
- 9.1. Introduction
- 9.2. Hidden Markov Models
- 9.3. Properties of the Hidden Markov Model
- 9.4. HMM Observation Probability: Evaluation Problem
- 9.5. State Estimation in HMM: The Viterbi Technique
- 9.6. Parameter Estimation in HMM: The EM/Baum-Welch Technique
- 9.7. Case Study: Time-Reversal Decoding
- 9.8. Summary
- References
- Problems
- 10. Bayesian Processors for Physics-Based Applications
- 10.1. Optimal Position Estimation for the Automatic Alignment
- 10.2. Broadband Ocean Acoustic Processing
- 10.3. Bayesian Processing for Biothreats
- 10.4. Bayesian Processing for the Detection of Radioa