Microwave filters for communication systems : fundamentals, design, and applications /

Saved in:
Bibliographic Details
Author / Creator:Cameron, Richard J.
Imprint:Hoboken, N.J. : Wiley-Interscience, ©2007.
Description:1 online resource (xxxi, 771 pages) : illustrations
Language:English
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/13597306
Hidden Bibliographic Details
Other authors / contributors:Kudsia, Chandra M.
Mansour, Raafat R.
ISBN:9780471450221
0471450227
9780470135990
0470135999
Digital file characteristics:text file
Notes:Includes bibliographical references and index.
Electronic reproduction. [Place of publication not identified] : HathiTrust Digital Library, 2010.
Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002. http://purl.oclc.org/DLF/benchrepro0212
English.
digitized 2010 HathiTrust Digital Library committed to preserve
Print version record.
Summary:There have been significant advances in the synthesis and physical realization of microwave filter networks over the last three decades. This book provides a coherent and readable description of system requirements and constraints for microwave filters, fundamental considerations in the theory and design of microwave filters, up-to-date modern synthesis techniques with examples and technology considerations in the choice of hardware.
Other form:Print version: Cameron, Richard J. Microwave filters for communication systems. Hoboken, N.J. : Wiley-Interscience, ©2007
Standard no.:9780471450221
Table of Contents:
  • Foreword
  • Preface
  • Acknowledgments
  • 1. Radio Frequency (RF) Filter Networks for Wireless Communications-The System Perspective
  • Part I. Introduction to a Communication System, Radio Spectrum, and Information
  • 1.1. Model of a Communication System
  • 1.1.1. Building Blocks of a Communication System
  • 1.2. Radio Spectrum and its Utilization
  • 1.2.1. Radio Propagation at Microwave Frequencies
  • 1.2.2. Radio Spectrum as a Natural Resource
  • 1.3. Concept of Information
  • 1.4. Communication Channel and Link Budgets
  • 1.4.1. Signal Power in a Communication Link
  • 1.4.2. Transmit and Receive Antennas
  • Part II. Noise in a Communication Channel
  • 1.5. Noise in Communication Systems
  • 1.5.1. Adjacent Copolarized Channel Interference
  • 1.5.2. Adjacent Cross-Polarized Channel Interference
  • 1.5.3. Multipath Interference
  • 1.5.4. Thermal Noise
  • 1.5.5. Noise in Cascaded Networks
  • 1.5.6. Intermodulation (IM) Noise
  • 1.5.7. Distortion Due to Channel Imperfections
  • 1.5.8. RF Link Design
  • 1.6. Modulation-Demodulation Schemes in a Communication System
  • 1.6.1. Amplitude Modulation
  • 1.6.2. Formation of a Baseband Signal
  • 1.6.3. Angle-Modulated Signals
  • 1.6.4. Comparison of FM and AM Systems
  • 1.7. Digital Transmission
  • 1.7.1. Sampling
  • 1.7.2. Quantization
  • 1.7.3. PCM Systems
  • 1.7.4. Quantization Noise in PCM Systems
  • 1.7.5. Error Rates in Binary Transmission
  • 1.7.6. Digital Modulation and Demodulation Schemes
  • 1.7.7. Advanced Modulation Schemes
  • 1.7.8. Quality of Service and S/N Ratio
  • Part III. Impact of System Design on the Requirements of Filter Networks
  • 1.8. Communication Channes in a Satellite System
  • 1.8.1. Receive Section
  • 1.8.2. The Channelizer Section
  • 1.8.3. High-Power Amplifiers (HPAs)
  • 1.8.4. Transmitter Section Architecture
  • 1.9. RF Filters in Cellular Systems
  • 1.10. Impact of System Requirements on RF Filter Specifications
  • 1.11. Impact of Satellite and Cellular Communications on Filter Technology
  • Summary
  • References
  • Appendix 1A. Intermodulation Distortion Summary
  • 2. Fundamentals of Circuit Theory Approximation
  • 2.1. Linear Systems
  • 2.1.1. Concept of Linearity
  • 2.2. Classification of Systems
  • 2.2.1. Time-Invariant and Time-Variant Systems
  • 2.2.2. Lumped and Distributed Systems
  • 2.2.3. Instantaneous and Dynamic Systems
  • 2.2.4. Analog and Digital Systems
  • 2.3. Evolution of Electrical Circuits-A Historical Perspective
  • 2.3.1. Circuit Elements
  • 2.4. Network Equation of Linear Systems in the Time Domain
  • 2.5. Network Equation of Linear Systems in the Frequency-Domain Exponential Driving Function
  • 2.5.1. Complex Frequency Variable
  • 2.5.2. Transfer Function
  • 2.5.3. Signal Representation by Continuous Exponentials
  • 2.5.4. Transfer Functions of Electrical Networks
  • 2.6. Steady-State Response of Linear Systems to Sinusoidal Excitations
  • 2.7. Circuit Theory Approximation
  • Summary
  • References
  • 3. Characterization of Lossless Lowpass Prototype Filter Functions
  • 3.1. The Ideal Filter
  • 3.1.1. Distortionless Transmission
  • 3.1.2. Maximum Power Transfer in Two-Port Networks
  • 3.2. Characterization of Polynomial Functions for Doubly Terminated Lossless Lowpass Prototype Filter Networks
  • 3.2.1. Reflection and Transmission Coefficients
  • 3.2.2. Normalization of the Characteristic Polynomials
  • 3.3. Characteristic Polynomials for Idealized Lowpass Prototype Networks
  • 3.4. Lowpass Prototype Characteristics
  • 3.4.1. Amplitude Response
  • 3.4.2. Phase Response
  • 3.4.3. Phase Linearity
  • 3.5. Characteristic Polynomials Versus Response Shapes
  • 3.5.1. All-Pole Prototype Filter Functions
  • 3.5.2. Prototype Filter Functions with Finite Transmission Zeros
  • 3.6. Classical Prototype Filters
  • 3.6.1. Maximally Flat Filters
  • 3.6.2. Chebyshev Approximation
  • 3.6.3. Elliptic Function Filters
  • 3.6.4. Odd-Order Elliptic Function Filters
  • 3.6.5. Even-Order Elliptic Function Filters
  • 3.6.6. Filters with Transmission Zeros and a Maximally Flat Passband
  • 3.6.7. Lineal-Phase Filters
  • 3.6.8. Comparison of Maximally Flat, Chebyshev, and Elliptic Function Filters
  • 3.7. Unified Design Chart (UDC) Relationships
  • 3.7.1. Ripple Factor
  • 3.8. Lowpass Prototype Circuit Configurations
  • 3.8.1. Scaling of Prototype Networks
  • 3.8.2. Frequency Response of Scaled Networks
  • 3.9. Effect of Dissipation
  • 3.9.1. Relationship of Dissipation Factor [delta] and Quality Factor Q[subscript 0]
  • 3.9.2. Equivalent [delta] for Lowpass and Highpass Filters
  • 3.9.3. Equivalent [delta] for Bandpass and Bandstop Filters
  • 3.10. Asymmetric Response Filters
  • 3.10.1. Positive Functions
  • Summary
  • References
  • Appendix 3A. Unified Design Charts
  • 4. Computer-Aided Synthesis of Characteristic Polynomials
  • 4.1. Objective Function and Constraints for Symmetric Lowpass Prototype Filter Networks
  • 4.2. Analytic Gradients of the Objective Function
  • 4.2.1. Gradient of the Unconstrained Objective Function
  • 4.2.2. Gradient of the Inequality Constraint
  • 4.2.3. Gradient of the Equality Constraint
  • 4.3. Optimization Criteria for Classical Filters
  • 4.3.1. Chebyshev Function Filters
  • 4.3.2. Inverse Chebyshev Filters
  • 4.3.3. Elliptic Function Filters
  • 4.4. Generation of Novel Classes of Filter Functions
  • 4.4.1. Equiripple Passbands and Stopbands
  • 4.4.2. Nonequiripple Stopband with an Equiripple Passband
  • 4.5. Asymmetric Class of Filters
  • 4.5.1. Asymmetric Filters with Chebyshev Passband
  • 4.5.2. Asymmetrical Filters with Arbitrary Response
  • 4.6. Linear Phase Filters
  • 4.7. Critical Frequencies for Selected Fitter Functions
  • Summary
  • References
  • Appendix 4A. Critical Frequencies for an Unconventional 8-Pole Filter
  • 5. Analysis of Multiport Microwave Networks
  • 5.1. Matrix Representation of Two-Port Networks
  • 5.1.1. Impedance [Z] and Admittance [Y] Matrices
  • 5.1.2. The [ABCD] Matrix
  • 5.1.3. The Scattering [S] Matrix
  • 5.1.4. The Transmission Matrix [T]
  • 5.1.5. Analysis of Two-Port Networks
  • 5.2. Cascade of Two Networks
  • 5.3. Multiport Networks
  • 5.4. Analysis of Multiport Networks
  • Summary
  • References
  • 6. Synthesis of a General Class of the Chebyshev Filter Function
  • 6.1. Polynomial forms of the Transfer and Reflection Parameters S[subscript 21](s) and S[subscript 11](s) for a Two-Port Network
  • 6.1.1. Relationships Between [epsilon] and [epsilon subscript R]
  • 6.2. Alternating Pole Method for Determination of the Denominator Polynomial E(s)
  • 6.3. General Polynomial Synthesis Methods for Chebyshev Filter Functions
  • 6.3.1. Polynomial Synthesis
  • 6.3.2. Recursive Technique
  • 6.3.3. Polynomial Forms for Symmetric and Asymmetric Filtering Functions
  • 6.4. Predistorted Filter Characteristics
  • 6.4.1. Synthesis of the Predistorted Filter Network
  • 6.5. Transformation for Dual-Band Bandpass Filters
  • Summary
  • References
  • 7. Synthesis of Network-Circuit Approach
  • 7.1. Circuit Synthesis Approach
  • 7.1.1. Buildup of [ABCD] Matrix for the Third-Degree Network
  • 7.1.2. Network Synthesis
  • 7.2. Lowpass Prototype Circuits for Coupled-Resonator Microwave Bandpass Filters
  • 7.2.1. Synthesis of the [ABCD] Polynomials for Circuits with Inverters
  • 7.2.2. Synthesis of the [ABCD] Polynomials for the Singly Terminated Filter Prototype
  • 7.3. Ladder Network Synthesis
  • 7.4. Synthesis Example of an Asymmetric (4-2) Filter Network
  • Summary
  • References
  • 8. Coupling Matrix Synthesis of Filter Networks
  • 8.1. Coupling Matrix
  • 8.1.1. Bandpass and Lowpass Prototypes
  • 8.1.2. Formation of the General N x N Coupling Matrix and its Analysis
  • 8.1.3. Formation of the Coupling Matrix from the Lowpass Prototype Circuit Elements
  • 8.1.4. Analysis of the Network Represented by the Coupling Matrix
  • 8.1.5. Direct Analysis
  • 8.2. Direct Synthesis of the Coupling Matrix
  • 8.2.1. Direct Synthesis of the N x N Coupling Matrix
  • 8.3. Coupling Matrix Reduction
  • 8.3.1. Similarity Transformation and Annihilation f Matrix Elements
  • 8.4. Synthesis of the N + 2 Coupling Matrix
  • 8.4.1. Synthesis of the Transversal Coupling Matrix
  • 8.4.2. Reduction of the N + 2 Transversal Matrix to the Folded Canonical Form
  • 8.4.3. Illustrative Example
  • Summary
  • References
  • 9. Reconfiguration of the Folded Coupling Matrix
  • 9.1. Symmetric Realizations for Dual-Mode Filters
  • 9.1.1. Sixth-Degree Filter
  • 9.1.2. Eighth-Degree Filter
  • 9.1.3. 10th-Degree Filter
  • 9.1.4. 12th-Degree Filter
  • 9.2. Asymmetric Realizations for Symmetric Characteristics
  • 9.3. "Pfitzenmaier" Configurations
  • 9.4. Cascaded Quartets (CQs)-Two Quartets in Cascade for Degrees 8 and Above
  • 9.5. Parallel-Connected Two-Port Networks
  • 9.5.1. Even-Mode and Odd-Mode Coupling Submatrices
  • 9.6. Cul-de-Sac Configuration
  • 9.6.1. Further Cul-de-Sac Forms
  • 9.6.2. Sensitivity Considerations
  • Summary
  • References
  • 10. Synthesis and Application of Extracted Pole and Trisection Elements
  • 10.1. Extracted Pole Filter Synthesis
  • 10.1.1. Synthesis of the Extracted Pole Element
  • 10.1.2. Example of Synthesis of Extracted Pole Network
  • 10.1.3. Analysis of the Extracted Pole Filter Network
  • 10.1.4. Direct-Coupled Extracted Pole Filters
  • 10.2. Synthesis of Bandstop Filters Using the Extracted Pole Technique
  • 10.2.1. Direct-Coupled Bandstop Filters
  • 10.3. Trisections
  • 10.3.1. Synthesis of the Trisection-Circuit Approach
  • 10.3.2. Cascade Trisections-Coupling Matrix Approach
  • 10.3.3. Techniques Based on the Trisection for Synthesis of Advanced Circuits
  • 10.4. Box Section and Extended Box Configurations
  • 10.4.1. Box Sections
  • 10.4.2. Extended Box Sections
  • Summary
  • References
  • 11. Microwave Resonators
  • 11.1. Microwave Resonator Configurations
  • 11.2. Calculation of Resonant Frequency
  • 11.2.1. Resonance Frequency of Conventional Transmission-Line Resonators
  • 11.2.2. Resonance Frequency Calculation Using the Transverse Resonance Technique
  • 11.2.3. Resonance Frequency of Arbitrarily Shaped Resonators
  • 11.3. Resonator Unloaded Q Factor
  • 11.3.1. Unloaded Q Factor of Conventional Resonators
  • 11.3.2. Unloaded Q of Arbitrarily Shaped Resonators
  • 11.4. Measurement of Loaded and Unloaded Q Factor
  • Summary
  • References
  • 12. Waveguide and Coaxial Lowpass Filters
  • 12.1. Commensurate-Line Building Elements
  • 12.2. Lowpass Prototype Transfer Polynomials
  • 12.2.1. Chebyshev Polynomials of the Second Kind
  • 12.2.2. Achieser-Zolotarev Functions
  • 12.3. Synthesis and Realization of the Distributed Stepped Impedance Lowpass Filter
  • 12.3.1. Mapping the Transfer Function S[subscript 21] from the [omega] Plane to the [theta] Plane
  • 12.3.2. Synthesis of the Stepped Impedance Lowpass Prototype Circuit
  • 12.3.3. Realization
  • 12.4. Short-Step Transformers
  • 12.5. Synthesis and Realization of Mixed Lumped/Distributed Lowpass Filter
  • 12.5.1. Formation of the Transfer and Reflection Polynomials
  • 12.5.2. Synthesis of the Tapered-Corrugated Lowpass Prototype Circuit
  • 12.5.3. Realization
  • Summary
  • References
  • 13. Waveguide Realization of Single- and Dual-Mode Resonator Filters
  • 13.1. Synthesis Process
  • 13.2. Design of the Filter Function
  • 13.2.1. Amplitude Optimization
  • 13.2.2. Rejection Lobe Optimization
  • 13.2.3. Group Delay Optimization
  • 13.3. Realization and Analysis of the Microwave Filter Network
  • 13.4. Dual-Mode Filters
  • 13.4.1. Virtual Negative Couplings
  • 13.5. Coupling Sign Correction
  • 13.6. Dual-Mode Realizations for Some Typical Coupling Matrix Configurations
  • 13.6.1. Folded Array
  • 13.6.2. Pfitzenmaier Configuration
  • 13.6.3. Propagating Forms
  • 13.6.4. Cascade Quartet
  • 13.6.5. Extended Box
  • 13.7. Phase- and Direct-Coupled Extracted Pole Filters
  • 13.8. The "Full Inductive" Dual-Mode Filter
  • 13.8.1. Synthesis of the Equivalent Circuit
  • Summary
  • References
  • 14. Design and Physical Realization of Coupled Resonator Filters
  • 14.1. Circuit Models for Chebyshev Bandpass Filters
  • 14.2. Calculation of Interresonator Coupling
  • 14.2.1. The Use of Electric Wall and Magnetic Wall Symmetry
  • 14.2.2. Interresonator Coupling Calculation Using S Parameters
  • 14.3. Calculation of Input/Output Coupling
  • 14.3.1. Frequency Domain Method
  • 14.3.2. Group Delay Method
  • 14.4. Design Example of Dielectric Resonator Filters Using the Coupling Matrix Model
  • 14.4.1. Calculation of Dielectric Resonator Cavity Configuration
  • 14.4.2. Calculation of Iris Dimensions for Interresonator Coupling
  • 14.4.3. Calculation of Input/Output Coupling
  • 14.5. Design Example of a Waveguide Iris Filter Using the Impedance Inverter Model
  • 14.6. Design Example of a Microstrip Filter Using the J-Admittance Inverter Model
  • Summary
  • References
  • 15. Advanced EM-Based Design Techniques for Microwave Filters
  • 15.1. EM-Based Synthesis Techniques
  • 15.2. EM-Based Optimization Techniques
  • 15.2.1. Optimization Using an EM Simulator
  • 15.2.2. Optimization Using Semi-EM-Based Simulator
  • 15.2.3. Optimization Using an EM Simulator with Adaptive Frequency Sampling
  • 15.2.4. Optimization Using EM-Based Neural Network Models
  • 15.2.5. Optimization Using EM-Based Multidimensional Cauchy Technique
  • 15.2.6. Optimization Using EM-Based Fuzzy Logic
  • 15.3. EM-Based Advanced Design Techniques
  • 15.3.1. Space Mapping Techniques
  • 15.3.2. Calibrated Coarse Model (CCM) Techniques
  • 15.3.3. Generalized Calibrated Coarse Model Technique for Filter Design
  • Summary
  • References
  • 16. Dielectric Resonator Filters
  • 16.1. Resonant Frequency Calculation in Dielectric Resonators
  • 16.2. Rigorous Analyses of Dielectric Resonators
  • 16.2.1. Mode Charts for Dielectric Resonators
  • 16.3. Dielectric Resonator Filter Configurations
  • 16.4. Design Considerations for Dielectric Resonator Filters
  • 16.4.1. Achievable Filter Q Value
  • 16.4.2. Spurious Performance of Dielectric Resonator Filters
  • 16.4.3. Temperature Drift
  • 16.4.4. Power Handling Capability
  • 16.5. Other Dielectric Resonator Configurations
  • 16.6. Cryogenic Dielectric Resonator Filters
  • 16.7. Hybrid Dielectric/Superconductor Filters
  • Summary
  • References
  • 17. Allpass Phase and Group Delay Equalizer Networks
  • 17.1. Characteristics of Allpass Networks
  • 17.2. Lumped-Element Allpass Networks
  • 17.2.1. Resistively Terminated Symmetric Lattice Networks
  • 17.2.2. Network Realizations
  • 17.3. Microwave Allpass Networks
  • 17.4. Physical Realization of Allpass Networks
  • 17.4.1. Transmission-Type Equalizers
  • 17.4.2. Reflection-Type Allpass Networks
  • 17.5. Synthesis of Reflection-Type Allpass Networks
  • 17.6. Practical Narrowband Reflection-Type Allpass Networks
  • 17.6.1. C-Section Allpass Equalizer in Waveguide Structure
  • 17.6.2. D-Section Allpass Equalizer in Waveguide Structure
  • 17.6.3. Narrowband TEM Reactance Networks
  • 17.7. Optimization Criteria for Allpass Networks
  • 17.8. Effect of Dissipation
  • 17.8.1. Dissipation Loss of a Lumped-Element First-Order Allpass Equalizer
  • 17.8.2. Dissipation Loss of a Second-Order Lumped Equalizer
  • 17.8.3. Effect of Dissipation in Distributed Allpass Networks
  • 17.9. Equalization Tradeoffs
  • Summary
  • References
  • 18. Multiplexer Theory and Design
  • 18.1. Background
  • 18.2. Multiplexer Configurations
  • 18.2.1. Hybrid Coupled Approach
  • 18.2.2. Circulator-Coupled Approach
  • 18.2.3. Directional Filter Approach
  • 18.2.4. Manifold-Coupled Approach
  • 18.3. RF Channelizers (Demultiplexers)
  • 18.3.1. Hybrid Branching Network
  • 18.3.2. Circulator-Coupled MUX
  • 18.3.3. En Passant Distortion
  • 18.4. RF Combiners
  • 18.4.1. Circulator-Coupled MUX
  • 18.4.2. Hybrid-Coupled Filter Combiner Module (HCFM) Multiplexer
  • 18.4.3. Directional Filter Combiner
  • 18.4.4. Manifold Multiplexer
  • 18.5. Transmit-Receive Diplexers
  • 18.5.1. Internal Voltage Levels in Tx/Rx Diplexer Filters
  • Summary
  • References
  • 19. Computer-Aided Diagnosis and Tuning of Microwave Filters
  • 19.1. Sequential Tuning of Coupled Resonator Filters
  • 19.2. Computer-Aided Tuning Based on Circuit Model Parameter Extraction
  • 19.3. Computer-Aided Tuning Based on Poles and Zeros of the Input Reflection Coefficient
  • 19.4. Time-Domain Tuning
  • 19.4.1. Time-Domain Tuning of Resonator Frequencies
  • 19.4.2. Time-Domain Tuning of Interresonator Coupling
  • 19.4.3. Time-Domain Response of a Golden Filter
  • 19.5. Filter Tuning Based on Fuzzy Logic Techniques
  • 19.5.1. Description of Fuzzy Logic Systems
  • 19.5.2. Steps in Building the FL System
  • 19.5.3. Comparison Between Boolean Logic and Fuzzy Logic
  • 19.5.4. Applying Fuzzy Logic to Filter Tuning
  • 19.6. Automated Setups for Filter Tuning
  • Summary
  • References
  • 20. High-Power Considerations in Microwave Filter Networks
  • 20.1. Background
  • 20.2. High-Power Requirements in Wireless Systems
  • 20.3. High-Power Amplifiers (HPAs)
  • 20.4. High-Power Breakdown Phenomena
  • 20.4.1. Gaseous Breakdown
  • 20.4.2. Mean Free Path
  • 20.4.3. Diffusion
  • 20.4.4. Attachment
  • 20.4.5. Breakdown in Air
  • 20.4.6. Critical Pressure
  • 20.4.7. Power Rating of Waveguides and Coaxial Transmission Lines
  • 20.4.8. Derating Factors
  • 20.4.9. Impact of Thermal Dissipation on Power-Rating
  • 20.5. High-Power Bandpass Filters
  • 20.5.1. Bandpass Filters Limited by Thermal Dissipation
  • 20.5.2. Bandpass Filters Limited by Voltage Breakdown
  • 20.5.3. Filter Prototype Network
  • 20.5.4. Lumped To Distributed Scaling
  • 20.5.5. Resonator Voltages from Prototype Network
  • 20.5.6. Example and Verification Via FEM Simulation
  • 20.5.7. Example of High Voltages in a Multiplexer
  • 20.6. Multipaction Breakdown
  • 20.6.1. Dependence on Vacuum Environment
  • 20.6.2. Dependence on Applied RF Voltage
  • 20.6.3. Dependence on f x d Product
  • 20.6.4. Dependence on Surface Conditions of Materials
  • 20.6.5. Detection and Prevention of Multipaction
  • 20.6.6. Design Margins in Multipaction
  • 20.6.7. Multipactor Breakdown Levels
  • 20.7. Passive Intermodulation (PIM) Consideration for High-Power Equipment
  • 20.7.1. PIM Measurement
  • 20.7.2. PIM Control Guidelines
  • Summary
  • References
  • Appendix A.
  • Appendix B.
  • Appendix C.
  • Appendix D.
  • Index