Computational modelling of biomechanics and biotribology in the musculoskeletal system : biomaterials and tissues /
Saved in:
Imprint: | Cambridge, UK : Woodhead Pub., 2014. |
---|---|
Description: | 1 online resource (xxiv, 525 pages) : illustrations |
Language: | English |
Series: | Woodhead Publishing series in biomaterials ; number 81 Woodhead Publishing series in biomaterials ; no. 81. |
Subject: | |
Format: | E-Resource Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/13623127 |
Table of Contents:
- Cover; Computational Modelling of Biomechanics and Biotribology in the Musculoskeletal System: Biomaterials and Tissues; Copyright; Contents; Contributor contact details; Woodhead Publishing Series in Biomaterials; Foreword; Preface; Part I Generic modelling of biomechanics and biotribology; 1 Fundamentals of computational modelling of biomechanics in the musculoskeletal system; 1.1 Computational approach and its importance; 1.2 Generic computational approach and important considerations; 1.3 Computational methods and software; 1.4 Future trends; 1.5 Sources of further information and advice.
- 1.6 References2 Finite element modeling in the musculoskeletal system: generic overview; 2.1 The musculoskeletal (MSK) system; 2.2 Overview of the finite element (FE) method; 2.3 State-of-the-art FE modeling of the MSK system; 2.4 Key modeling procedures and considerations; 2.5 Challenges and future trends; 2.6 References; 3 Joint wear simulation; 3.1 Introduction; 3.2 Classification of wear; 3.3 Analytic and theoretical modelling of wear; 3.4 Implementation of wear modelling in the assessment of joint replacement; 3.5 Validating wear models; 3.6 Future trends; 3.7 References.
- 3.8 Appendix: useful tablesPart II Computational modelling of musculoskeletal cells and tissues; 4 Computational modeling of cell mechanics; 4.1 Introduction; 4.2 Mechanobiology of cells; 4.3 Computational descriptions of whole-cell mechanics; 4.4 Liquid drop models; 4.5 Solid elastic models; 4.6 Power-law rheology model; 4.7 Biphasic model; 4.8 Tensegrity model; 4.9 Semi-flexible chain model; 4.10 Dipole polymerization model; 4.11 Brownian ratchet models; 4.12 Dynamic stochastic model; 4.13 Constrained mixture model; 4.14 Bio-chemo-mechanical model; 4.15 Computational models for muscle cells.
- 4.16 Future trends4.17 References; 5 Computational modeling of soft tissues and ligaments; 5.1 Introduction; 5.2 Background and preparatory results; 5.3 Multiscale modeling of unidirectional soft tissues; 5.4 Multiscale modeling of multidirectional soft tissues; 5.5 Mechanics at cellular scale: a submodeling approach; 5.6 Limitations and conclusions; 5.7 Acknowledgments; 5.8 References; 6 Computational modeling of muscle biomechanics; 6.1 Introduction; 6.2 Mechanisms of muscle contraction: muscle structure and force production; 6.3 Biophysical aspects of skeletal muscle contraction.
- 6.4 One-dimensional skeletal muscle modeling6.5 Causes and models of history-dependence of muscle force production; 6.6 Three-dimensional skeletal muscle modeling; 6.7 References; 7 Computational modelling of articular cartilage; 7.1 Introduction; 7.2 Current state in modelling of articular cartilage; 7.3 Comparison and discussion of major theories; 7.4 Applications and challenges; 7.5 Conclusion; 7.6 References; 8 Computational modeling of bone and bone remodeling; 8.1 Introduction; 8.2 Computational modeling examples of bone mechanical properties and bone remodeling.