Mastering Spark for data science : master the techniques and sophisticated analytics used to construct Spark-based solutions that scale to deliver production-grade data science products /
Saved in:
Author / Creator: | Morgan, Andrew, author. |
---|---|
Imprint: | Birmingham, UK : Packt Publishing, 2017. |
Description: | 1 online resource (1 volume) : illustrations |
Language: | English |
Subject: | |
Format: | E-Resource Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/13651075 |
Other authors / contributors: | Amend, Antoine, author. Hallett, Matthew, author. George, David, author. |
---|---|
ISBN: | 9781785888281 1785888285 9781785882142 |
Notes: | Description based on online resource; title from cover (Safari, viewed April 19, 2017). |
Summary: | Master the techniques and sophisticated analytics used to construct Spark-based solutions that scale to deliver production-grade data science products About This Book Develop and apply advanced analytical techniques with Spark Learn how to tell a compelling story with data science using Spark's ecosystem Explore data at scale and work with cutting edge data science methods Who This Book Is For This book is for those who have beginner-level familiarity with the Spark architecture and data science applications, especially those who are looking for a challenge and want to learn cutting edge techniques. This book assumes working knowledge of data science, common machine learning methods, and popular data science tools, and assumes you have previously run proof of concept studies and built prototypes. What You Will Learn Learn the design patterns that integrate Spark into industrialized data science pipelines See how commercial data scientists design scalable code and reusable code for data science services Explore cutting edge data science methods so that you can study trends and causality Discover advanced programming techniques using RDD and the DataFrame and Dataset APIs Find out how Spark can be used as a universal ingestion engine tool and as a web scraper Practice the implementation of advanced topics in graph processing, such as community detection and contact chaining Get to know the best practices when performing Extended Exploratory Data Analysis, commonly used in commercial data science teams Study advanced Spark concepts, solution design patterns, and integration architectures Demonstrate powerful data science pipelines In Detail Data science seeks to transform the world using data, and this is typically achieved through disrupting and changing real processes in real industries. In order to operate at this level you need to build data science solutions of substance ?solutions that solve real problems. Spark has emerged as the big data platform of choice for data scientists due to its speed, scalability, and easy-to-use APIs. This book deep dives into using Spark to deliver production-grade data science solutions. This process is demonstrated by exploring the construction of a sophisticated global news analysis service that uses Spark to generate continuous geopolitical and current affairs insights.You will learn all about the core Spark APIs and take a comprehensive tour of advanced libraries, including Spark SQL, Spark Streaming, MLli... |
Similar Items
-
Mastering Spark for data science /
by: Morgan, Andrew
Published: (2017) -
Spark for data science : analyze your data and delve deep into the world of machine learning with the latest Spark version, 2.0 /
by: Duvvuri, Srinivas
Published: (2016) -
Spark : błyskawiczna analiza danych /
by: Damji, Jules S.
Published: (2023) -
Spark kuai su da shu ju fen xi : (di 2 ban) = Learnig Spark : second edition /
by: Damji, Jules S.
Published: (2021) -
Apache Spark 2 data processing and real-time analytics : master complex big data processing, stream analytics, and machine learning with Apache /
by: Kienzler, Romeo
Published: (2018)