Hands-on data analytics for beginners with Google Colaboratory /

Saved in:
Bibliographic Details
Author / Creator:Delgado, Tairi R., speaker.
Imprint:[Place of publication not identified] : Packt, [2018]
Description:1 online resource (1 streaming video file (4 hr., 52 min., 31 sec.))
Language:English
Subject:
Format: E-Resource Video Streaming Video
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/13660458
Hidden Bibliographic Details
Notes:Title from title screen (viewed August 21, 2018).
Date of publication from resource description page.
Presenter, Tairi R. Delgado.
Summary:"Google Colaboratory is an online platform to perform data analysis. It enables you to create interactive Jupyter notebooks that mix text with Python code to run queries and display data analysis results. Stored on Google Drive you'll be able to run notebooks and collaborate with peers through Google's cloud services. In this course, you will learn to solve problems and obtain key results with data. You will begin by building your own Jupyter notebook before you explore and learn the basics of Google Colaboratory. Then you will explore several file formats to store data and use SQLite to query large datasets. Next, you will learn to initialize 1D and 2D data structures with the Numpy and Pandas libraries to help organize and summarize metrics such as the mean, median, and standard deviation of your data. Moving further, you will learn to identify outliers in your data, eliminate dirty data and perform common data transformations. Finally, you will use qualitative and quantitative data types with Matplotlib to display effective charts and visuals. By the end of this course, you'll have the tools to perform data analysis to tell your own compelling stories with data."--Resource description page

MARC

LEADER 00000cgm a2200000 i 4500
001 13660458
006 m o c
007 cr cna||||||||
007 vz czazuu
008 180822s2018 xx 293 o vleng d
005 20241122231903.8
035 |a (OCoLC)1049177172 
035 9 |a (OCLCCM-CC)1049177172 
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d OCLCF  |d UAB  |d ALSTP  |d OCLCO  |d OCL  |d OCLCA  |d OCLCQ  |d OCLCO 
037 |a CL0500000987  |b Safari Books Online 
050 4 |a QA76.585 
049 |a MAIN 
100 1 |a Delgado, Tairi R.,  |e speaker. 
245 1 0 |a Hands-on data analytics for beginners with Google Colaboratory /  |c Tairi R. Delgado. 
264 1 |a [Place of publication not identified] :  |b Packt,  |c [2018] 
300 |a 1 online resource (1 streaming video file (4 hr., 52 min., 31 sec.)) 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
337 |a video  |b v  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
511 0 |a Presenter, Tairi R. Delgado. 
500 |a Title from title screen (viewed August 21, 2018). 
500 |a Date of publication from resource description page. 
520 |a "Google Colaboratory is an online platform to perform data analysis. It enables you to create interactive Jupyter notebooks that mix text with Python code to run queries and display data analysis results. Stored on Google Drive you'll be able to run notebooks and collaborate with peers through Google's cloud services. In this course, you will learn to solve problems and obtain key results with data. You will begin by building your own Jupyter notebook before you explore and learn the basics of Google Colaboratory. Then you will explore several file formats to store data and use SQLite to query large datasets. Next, you will learn to initialize 1D and 2D data structures with the Numpy and Pandas libraries to help organize and summarize metrics such as the mean, median, and standard deviation of your data. Moving further, you will learn to identify outliers in your data, eliminate dirty data and perform common data transformations. Finally, you will use qualitative and quantitative data types with Matplotlib to display effective charts and visuals. By the end of this course, you'll have the tools to perform data analysis to tell your own compelling stories with data."--Resource description page 
650 0 |a Cloud computing.  |0 http://id.loc.gov/authorities/subjects/sh2008004883 
650 0 |a Machine learning.  |0 http://id.loc.gov/authorities/subjects/sh85079324 
650 0 |a Python (Computer program language)  |0 http://id.loc.gov/authorities/subjects/sh96008834 
650 0 |a Big data.  |0 http://id.loc.gov/authorities/subjects/sh2012003227 
650 0 |a Electronic data processing.  |0 http://id.loc.gov/authorities/subjects/sh85042288 
650 6 |a Infonuagique. 
650 6 |a Apprentissage automatique. 
650 6 |a Python (Langage de programmation) 
650 6 |a Données volumineuses. 
650 7 |a Big data.  |2 fast  |0 (OCoLC)fst01892965 
650 7 |a Cloud computing.  |2 fast  |0 (OCoLC)fst01745899 
650 7 |a Electronic data processing.  |2 fast  |0 (OCoLC)fst00906956 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a Python (Computer program language)  |2 fast  |0 (OCoLC)fst01084736 
655 7 |a Instructional films.  |2 fast  |0 (OCoLC)fst01726236 
655 7 |a Instructional films.  |2 lcgft 
655 7 |a Films de formation.  |2 rvmgf 
856 4 0 |u https://www.aspresolver.com/aspresolver.asp?MARC;4074040  |y Alexander Street 
929 |a oclccm 
999 f f |s e6744720-800c-4f8c-a3ee-58ada60cd10b  |i 5a7ae7df-dc96-46c0-bcb7-fda748e47004 
928 |t Library of Congress classification  |a QA76.585  |l Online  |c UC-FullText  |u https://www.aspresolver.com/aspresolver.asp?MARC;4074040  |z Alexander Street  |g vidstream  |i 13803397