AI and analytics in production : how to make it work /

Saved in:
Bibliographic Details
Author / Creator:Dunning, Ted, 1956- author.
Edition:First edition.
Imprint:Sebastopol, CA : O'Reilly Media, [2018]
©2018
Description:1 online resource (1 volume) : illustrations
Language:English
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/13662446
Hidden Bibliographic Details
Varying Form of Title:Artificial intelligence and analytics in production
Other authors / contributors:Friedman, Ellen, author.
ISBN:9781492044109
Notes:Includes bibliographical references.
Online resource; title from title page (Safari, viewed November 5, 2018).
Summary:If you've begun to deploy large-scale data systems into production, or have at least explored the process, this practical ebook shows business team leaders, business analysts, and technical developers how to make your big data analytics, machine learning, and AI initiatives production ready. Authors Ted Dunning and Ellen Friedman provide a non-technical guide to best practices for a process that can be quite challenging. Rather than provide a complex review of tools, this ebook explores fundamental ideas on how to make your analytics production easier and more effective, based on the authors' observations across a wide range of industries. Whether your organization is just getting started or already has data-driven applications in production, you'll find helpful content that will help you succeed. Gain an understanding of the goals, challenges, and potential pitfalls of deploying analytics and AI to production Learn the best way to design, plan, and execute large data systems in production Focus on the special case of machine learning and AI in production Examine MapR, a data platform with the technical capabilities to support emerging trends for large-scale data Explore a range of design patterns that work well for production customers across various sectors Get best practices for avoiding various gotchas as you move to production.

MARC

LEADER 00000cam a2200000 i 4500
001 13662446
006 m o d
007 cr unu||||||||
008 181107s2018 caua ob 000 0 eng d
005 20241126143002.3
020 |z 9781492044109 
035 9 |a (OCLCCM-CC)1061561914 
035 |a (OCoLC)1061561914 
037 |a CL0501000005  |b Safari Books Online 
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d UAB  |d STF  |d OCLCF  |d TOH  |d G3B  |d MERER  |d OCLCQ  |d OCLCO  |d CZL  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
049 |a MAIN 
050 4 |a QA76.54 
100 1 |a Dunning, Ted,  |d 1956-  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PCjH46pJFCc6j6DRvP9xwhb  |0 http://id.loc.gov/authorities/names/n92028789 
245 1 0 |a AI and analytics in production :  |b how to make it work /  |c Ted Dunning and Ellen Friedman. 
246 3 |a Artificial intelligence and analytics in production 
250 |a First edition. 
264 1 |a Sebastopol, CA :  |b O'Reilly Media,  |c [2018] 
264 4 |c ©2018 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Online resource; title from title page (Safari, viewed November 5, 2018). 
504 |a Includes bibliographical references. 
520 |a If you've begun to deploy large-scale data systems into production, or have at least explored the process, this practical ebook shows business team leaders, business analysts, and technical developers how to make your big data analytics, machine learning, and AI initiatives production ready. Authors Ted Dunning and Ellen Friedman provide a non-technical guide to best practices for a process that can be quite challenging. Rather than provide a complex review of tools, this ebook explores fundamental ideas on how to make your analytics production easier and more effective, based on the authors' observations across a wide range of industries. Whether your organization is just getting started or already has data-driven applications in production, you'll find helpful content that will help you succeed. Gain an understanding of the goals, challenges, and potential pitfalls of deploying analytics and AI to production Learn the best way to design, plan, and execute large data systems in production Focus on the special case of machine learning and AI in production Examine MapR, a data platform with the technical capabilities to support emerging trends for large-scale data Explore a range of design patterns that work well for production customers across various sectors Get best practices for avoiding various gotchas as you move to production. 
650 0 |a Real-time data processing.  |0 http://id.loc.gov/authorities/subjects/sh85111765 
650 0 |a Electronic data processing  |x Distributed processing.  |0 http://id.loc.gov/authorities/subjects/sh85042293 
650 0 |a Data mining.  |0 http://id.loc.gov/authorities/subjects/sh97002073 
650 6 |a Temps réel (Informatique) 
650 6 |a Traitement réparti. 
650 6 |a Exploration de données (Informatique) 
650 7 |a Data mining  |2 fast 
650 7 |a Electronic data processing  |x Distributed processing  |2 fast 
650 7 |a Real-time data processing  |2 fast 
700 1 |a Friedman, Ellen,  |e author. 
758 |i has work:  |a AI and analytics in production (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFBbYWVWrp6QFXtQPhJvH3  |4 https://id.oclc.org/worldcat/ontology/hasWork 
856 4 0 |u https://go.oreilly.com/uchicago/library/view/-/9781492044116/?ar  |y O'Reilly 
929 |a oclccm 
999 f f |s b9bcb3e2-9096-4fca-b6b6-80a4c97a0584  |i 52c2c9c8-1c78-4e5b-bc4e-734050409567 
928 |t Library of Congress classification  |a QA76.54  |l Online  |c UC-FullText  |u https://go.oreilly.com/uchicago/library/view/-/9781492044116/?ar  |z O'Reilly  |g ebooks  |i 13805387