Achieving real business outcomes from artificial intelligence : enterprise considerations for AI initiatives /

Saved in:
Bibliographic Details
Author / Creator:Kureishy, Atif, author.
Edition:First edition.
Imprint:Sebastopol, CA : O'Reilly Media, 2018.
©2019
Description:1 online resource (1 volume) : illustrations
Language:English
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/13664462
Hidden Bibliographic Details
Other authors / contributors:Meley, Chad, author.
Mackenzie, Ben, author.
ISBN:9781492038207
Notes:Online resource; title from title page (Safari, viewed January 17, 2019).
Summary:Artificial intelligence is already changing industry landscapes, with early adopters reporting benefits in high-value business cases such as fraud detection, preventative maintenance, and recommendation engines. Yet working on an AI initiative is demanding for many enterprises, whether you're in the middle of the process or just getting started. This ebook provides advice to help your company complete your AI journey. Chad Meley from Teradata and Atif Kureishy and Ben Mackenzie from Think Big Analytics provide countermeasures for common AI challenges that arise when creating a strategy, dealing with technical issues, or operationalizing an AI initiative. You'll explore several case studies, including how a major bank successfully used a variety of deep learning methods to fight financial crime. With this ebook, you'll discover: How deep learning has the potential to increase production, drive down cost, reduce waste, improve efficiency, and push innovation Options and trade-offs for leveraging AI capabilities, including SaaS solutions, public cloud-based APIs, and custom AI models AI case studies for mining image data, using image recognition, providing customer service, and designing document automation How to overcome challenges in delivering value from custom AI development What to do in the face of emerging AI trends over the next three years.

MARC

LEADER 00000cam a2200000 i 4500
001 13664462
006 m o d
007 cr unu||||||||
008 190122t20182019caua o 000 0 eng d
005 20241126143227.1
020 |z 9781492038207 
035 9 |a (OCLCCM-CC)1083130709 
035 |a (OCoLC)1083130709 
037 |a CL0501000019  |b Safari Books Online 
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d STF  |d MERER  |d OCLCF  |d OCLCQ  |d CZL  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
049 |a MAIN 
050 4 |a Q335 
100 1 |a Kureishy, Atif,  |e author. 
245 1 0 |a Achieving real business outcomes from artificial intelligence :  |b enterprise considerations for AI initiatives /  |c Atif Kureishy, Chad Meley, and Ben Mackenzie. 
250 |a First edition. 
264 1 |a Sebastopol, CA :  |b O'Reilly Media,  |c 2018. 
264 4 |c ©2019 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Online resource; title from title page (Safari, viewed January 17, 2019). 
520 |a Artificial intelligence is already changing industry landscapes, with early adopters reporting benefits in high-value business cases such as fraud detection, preventative maintenance, and recommendation engines. Yet working on an AI initiative is demanding for many enterprises, whether you're in the middle of the process or just getting started. This ebook provides advice to help your company complete your AI journey. Chad Meley from Teradata and Atif Kureishy and Ben Mackenzie from Think Big Analytics provide countermeasures for common AI challenges that arise when creating a strategy, dealing with technical issues, or operationalizing an AI initiative. You'll explore several case studies, including how a major bank successfully used a variety of deep learning methods to fight financial crime. With this ebook, you'll discover: How deep learning has the potential to increase production, drive down cost, reduce waste, improve efficiency, and push innovation Options and trade-offs for leveraging AI capabilities, including SaaS solutions, public cloud-based APIs, and custom AI models AI case studies for mining image data, using image recognition, providing customer service, and designing document automation How to overcome challenges in delivering value from custom AI development What to do in the face of emerging AI trends over the next three years. 
650 0 |a Artificial intelligence  |x Economic aspects. 
650 0 |a Machine learning.  |0 http://id.loc.gov/authorities/subjects/sh85079324 
650 0 |a Cloud computing.  |0 http://id.loc.gov/authorities/subjects/sh2008004883 
650 6 |a Intelligence artificielle  |x Aspect économique. 
650 6 |a Apprentissage automatique. 
650 6 |a Infonuagique. 
650 7 |a Artificial intelligence  |x Economic aspects  |2 fast 
650 7 |a Cloud computing  |2 fast 
650 7 |a Machine learning  |2 fast 
700 1 |a Meley, Chad,  |e author. 
700 1 |a Mackenzie, Ben,  |e author. 
856 4 0 |u https://go.oreilly.com/uchicago/library/view/-/9781492038214/?ar  |y O'Reilly 
929 |a oclccm 
999 f f |s 445d4860-f8e1-4dfa-a221-649a8a3be326  |i aed49117-1b9b-4bd1-9aad-afa21579a6dc 
928 |t Library of Congress classification  |a Q335  |l Online  |c UC-FullText  |u https://go.oreilly.com/uchicago/library/view/-/9781492038214/?ar  |z O'Reilly  |g ebooks  |i 13807402