Security with AI and machine learning : using advanced tools to improve application security at the edge /

Saved in:
Bibliographic Details
Author / Creator:Gil, Laurent, author.
Edition:First edition.
Imprint:Sebastopol, CA : O'Reilly Media, [2018]
©2019
Description:1 online resource (1 volume) : illustrations
Language:English
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/13666169
Hidden Bibliographic Details
Other authors / contributors:Liska, Allan, author.
ISBN:9781492043126
Notes:Includes bibliographical references.
Online resource; title from title page (Safari, viewed March 19, 2019).
Summary:For security professionals seeking reliable ways to combat persistent threats to their networks, there's encouraging news. Tools that employ AI and machine learning have begun to replace the older rules- and signature-based tools that can no longer combat today's sophisticated attacks. In this ebook, Oracle's Laurent Gil and Recorded Future's Allan Liska look at the strengths (and limitations) of AI- and ML-based security tools for dealing with today's threat landscape. This high-level overview demonstrates how these new tools use AI and ML to quickly identify threats, connect attack patterns, and allow operators and analysts to focus on their core mission. You'll also learn how managed security service providers (MSSPs) use AI and ML to identify patterns from across their customer base. This ebook explains: Why rules-based, signature-based, and firewall solutions have fallen short How automated bots enable cybercriminals and nation-state actors to attack your network The evolution of the botnet: how threat actors constantly change their attack strategy How AI and ML techniques in web applications help you observe, quantify, and classify inbound requests How to detect insider threats and advanced persistent threat actors with AI and ML tools Case studies that show how a media company, an airline, and a university use AL and ML in security.

MARC

LEADER 00000cam a2200000 i 4500
001 13666169
006 m o d
007 cr unu||||||||
008 190319t20182019caua ob 000 0 eng d
005 20241126143126.0
020 |z 9781492043126 
035 9 |a (OCLCCM-CC)1090145241 
035 |a (OCoLC)1090145241 
037 |a CL0501000035  |b Safari Books Online 
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d OCLCF  |d CZL  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
049 |a MAIN 
050 4 |a Q325.5 
100 1 |a Gil, Laurent,  |e author. 
245 1 0 |a Security with AI and machine learning :  |b using advanced tools to improve application security at the edge /  |c Laurent Gil and Allan Liska. 
250 |a First edition. 
264 1 |a Sebastopol, CA :  |b O'Reilly Media,  |c [2018] 
264 4 |c ©2019 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Online resource; title from title page (Safari, viewed March 19, 2019). 
504 |a Includes bibliographical references. 
520 |a For security professionals seeking reliable ways to combat persistent threats to their networks, there's encouraging news. Tools that employ AI and machine learning have begun to replace the older rules- and signature-based tools that can no longer combat today's sophisticated attacks. In this ebook, Oracle's Laurent Gil and Recorded Future's Allan Liska look at the strengths (and limitations) of AI- and ML-based security tools for dealing with today's threat landscape. This high-level overview demonstrates how these new tools use AI and ML to quickly identify threats, connect attack patterns, and allow operators and analysts to focus on their core mission. You'll also learn how managed security service providers (MSSPs) use AI and ML to identify patterns from across their customer base. This ebook explains: Why rules-based, signature-based, and firewall solutions have fallen short How automated bots enable cybercriminals and nation-state actors to attack your network The evolution of the botnet: how threat actors constantly change their attack strategy How AI and ML techniques in web applications help you observe, quantify, and classify inbound requests How to detect insider threats and advanced persistent threat actors with AI and ML tools Case studies that show how a media company, an airline, and a university use AL and ML in security. 
650 0 |a Machine learning.  |0 http://id.loc.gov/authorities/subjects/sh85079324 
650 0 |a Artificial intelligence.  |0 http://id.loc.gov/authorities/subjects/sh85008180 
650 0 |a Computer networks  |x Security measures.  |0 http://id.loc.gov/authorities/subjects/sh94001277 
650 0 |a Computer security.  |0 http://id.loc.gov/authorities/subjects/sh90001862 
650 6 |a Apprentissage automatique. 
650 6 |a Intelligence artificielle. 
650 6 |a Réseaux d'ordinateurs  |x Sécurité  |x Mesures. 
650 6 |a Sécurité informatique. 
650 7 |a artificial intelligence.  |2 aat 
650 7 |a Artificial intelligence  |2 fast 
650 7 |a Computer networks  |x Security measures  |2 fast 
650 7 |a Computer security  |2 fast 
650 7 |a Machine learning  |2 fast 
700 1 |a Liska, Allan,  |e author.  |0 http://id.loc.gov/authorities/names/nb2002036884 
758 |i has work:  |a Security with AI and machine learning (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCH7H9pdQdBdPMT9Pjr3rVP  |4 https://id.oclc.org/worldcat/ontology/hasWork 
856 4 0 |u https://go.oreilly.com/uchicago/library/view/-/9781492043133/?ar  |y O'Reilly 
929 |a oclccm 
999 f f |s 197f8310-7f85-41aa-8ab5-bd3b256d21a5  |i 94c4ac5b-44f3-4bad-94e5-679ace66c4a5 
928 |t Library of Congress classification  |a Q325.5  |l Online  |c UC-FullText  |u https://go.oreilly.com/uchicago/library/view/-/9781492043133/?ar  |z O'Reilly  |g ebooks  |i 13809109