Semi-Riemannian geometry : the mathematical language of general relativity /

Saved in:
Bibliographic Details
Author / Creator:Newman, Stephen C., 1952- author.
Imprint:Hoboken, New Jersey : Wiley, [2019]
Description:1 online resource
Language:English
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/13666426
Hidden Bibliographic Details
ISBN:9781119517542
1119517540
9781119517559
1119517559
9781119517535 (hardcover)
9781119517566
1119517567
1119517532
Notes:Includes bibliographical references and index.
Description based on print version record and CIP data provided by publisher; resource not viewed.
Summary:An introduction to semi-Riemannian geometry as a foundation for general relativity Semi-Riemannian Geometry: The Mathematical Language of General Relativity is an accessible exposition of the mathematics underlying general relativity. The book begins with background on linear and multilinear algebra, general topology, and real analysis. This is followed by material on the classical theory of curves and surfaces, expanded to include both the Lorentz and Euclidean signatures. The remainder of the book is devoted to a discussion of smooth manifolds, smooth manifolds with boundary, smooth manifolds with a connection, semi-Riemannian manifolds, and differential operators, culminating in applications to Maxwell's equations and the Einstein tensor. Many worked examples and detailed diagrams are provided to aid understanding. This book will appeal especially to physics students wishing to learn more differential geometry than is usually provided in texts on general relativity. STEPHEN C. NEWMAN is Professor Emeritus at the University of Alberta, Edmonton, Alberta, Canada. He is the author of Biostatistical Methods in Epidemiology and A Classical Introduction to Galois Theory, both published by Wiley.
Other form:Print version: Newman, Stephen C., 1952- author. Semi-Riemannian geometry Hoboken, New Jersey : Wiley, [2019] 9781119517535

MARC

LEADER 00000cam a2200000 i 4500
001 13666426
006 m o d
007 cr |||||||||||
008 190408s2019 nju ob 001 0 eng
005 20241126143006.8
010 |a  2019016822 
019 |a 1110165459  |a 1117279178  |a 1151768097 
020 |a 9781119517542  |q (Adobe PDF) 
020 |a 1119517540 
020 |a 9781119517559  |q (ePub) 
020 |a 1119517559 
020 |z 9781119517535 (hardcover) 
020 |a 9781119517566  |q (electronic bk.) 
020 |a 1119517567  |q (electronic bk.) 
020 |z 1119517532 
035 9 |a (OCLCCM-CC)1096215845 
035 |a (OCoLC)1096215845  |z (OCoLC)1110165459  |z (OCoLC)1117279178  |z (OCoLC)1151768097 
037 |a CL0501000108  |b Safari Books Online 
040 |a DLC  |b eng  |e rda  |c DLC  |d OCLCF  |d N$T  |d EBLCP  |d RECBK  |d DG1  |d AU@  |d UKAHL  |d DLC  |d OCLCO  |d UMI  |d VT2  |d KSU  |d OCLCO  |d YDX  |d OCLCQ  |d OCLCO  |d OCLCL 
042 |a pcc 
049 |a MAIN 
050 0 0 |a QA671 
100 1 |a Newman, Stephen C.,  |d 1952-  |e author.  |0 http://id.loc.gov/authorities/names/n86112581 
245 1 0 |a Semi-Riemannian geometry :  |b the mathematical language of general relativity /  |c Stephen C. Newman. 
264 1 |a Hoboken, New Jersey :  |b Wiley,  |c [2019] 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b n  |2 rdamedia 
338 |a online resource  |b nc  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
588 |a Description based on print version record and CIP data provided by publisher; resource not viewed. 
520 |a An introduction to semi-Riemannian geometry as a foundation for general relativity Semi-Riemannian Geometry: The Mathematical Language of General Relativity is an accessible exposition of the mathematics underlying general relativity. The book begins with background on linear and multilinear algebra, general topology, and real analysis. This is followed by material on the classical theory of curves and surfaces, expanded to include both the Lorentz and Euclidean signatures. The remainder of the book is devoted to a discussion of smooth manifolds, smooth manifolds with boundary, smooth manifolds with a connection, semi-Riemannian manifolds, and differential operators, culminating in applications to Maxwell's equations and the Einstein tensor. Many worked examples and detailed diagrams are provided to aid understanding. This book will appeal especially to physics students wishing to learn more differential geometry than is usually provided in texts on general relativity. STEPHEN C. NEWMAN is Professor Emeritus at the University of Alberta, Edmonton, Alberta, Canada. He is the author of Biostatistical Methods in Epidemiology and A Classical Introduction to Galois Theory, both published by Wiley. 
650 0 |a Semi-Riemannian geometry.  |0 http://id.loc.gov/authorities/subjects/sh2009006345 
650 0 |a Geometry, Riemannian.  |0 http://id.loc.gov/authorities/subjects/sh85054159 
650 0 |a Manifolds (Mathematics)  |0 http://id.loc.gov/authorities/subjects/sh85080549 
650 0 |a Geometry, Differential.  |0 http://id.loc.gov/authorities/subjects/sh85054146 
650 6 |a Géométrie de Riemann. 
650 6 |a Variétés (Mathématiques) 
650 6 |a Géométrie différentielle. 
650 7 |a MATHEMATICS  |x Geometry  |x General.  |2 bisacsh 
650 7 |a Geometry, Differential  |2 fast 
650 7 |a Geometry, Riemannian  |2 fast 
650 7 |a Manifolds (Mathematics)  |2 fast 
650 7 |a Semi-Riemannian geometry  |2 fast 
758 |i has work:  |a Semi-Riemannian geometry (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGw3kqbppvKRqBJDT4PWjC  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Newman, Stephen C., 1952- author.  |t Semi-Riemannian geometry  |d Hoboken, New Jersey : Wiley, [2019]  |z 9781119517535  |w (DLC) 2019011644 
856 4 0 |u https://go.oreilly.com/uchicago/library/view/-/9781119517535/?ar  |y O'Reilly 
929 |a oclccm 
999 f f |s 6b3e41d2-914d-4ec2-a5a3-d69f30d0e587  |i 8ce4b8a9-3f45-4a8f-ba71-071c9f869bee 
928 |t Library of Congress classification  |a QA671  |l Online  |c UC-FullText  |u https://go.oreilly.com/uchicago/library/view/-/9781119517535/?ar  |z O'Reilly  |g ebooks  |i 13809366