Hands-on Python for finance /

Saved in:
Bibliographic Details
Author / Creator:Macarty, Matt, speaker.
Imprint:[Place of publication not identified] : Packt Publishing, 2019.
Description:1 online resource (1 streaming video file (5 hr., 25 min., 24 sec.))
Language:English
Subject:
Format: E-Resource Video
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/13666451
Hidden Bibliographic Details
Other authors / contributors:Packt Publishing, publisher.
Sound characteristics:digital
Digital file characteristics:video file
Notes:Title from resource description page (Safari, viewed April 11, 2019).
Presenter, Matt Macarty.
In English.
Summary:"This hands-on course helps both developers and quantitative analysts to get started with Python, and guides you through the most important aspects of using Python for quantitative finance. You will begin with a primer to Python and its various data structures. Then you will dive into third party libraries. You will work with Python libraries and tools designed specifically for analytical and visualization purposes. Then you will get an overview of cash flow across the timeline. You will also learn concepts like Time Series Evaluation, Forecasting, Linear Regression and also look at crucial aspects like Linear Models, Correlation and portfolio construction. Finally, you will compute Value at Risk (VaR) and simulate portfolio values using Monte Carlo Simulation which is a broader class of computational algorithms. With numerous practical examples through the course, you will develop a full-fledged framework for Monte Carlo, which is a class of computational algorithms and simulation-based derivatives and risk analytics."--Resource description page
Standard no.:9781789800975

MARC

LEADER 00000cgm a2200000 i 4500
001 13666451
006 m o c
007 cr cna||||||||
007 vz czazuu
008 190412s2019 xx 326 o vleng d
005 20241126142959.8
019 |a 1310490188  |a 1373493848 
024 8 |a 9781789800975 
035 9 |a (OCLCCM-CC)1096452713 
035 |a (OCoLC)1096452713  |z (OCoLC)1310490188  |z (OCoLC)1373493848 
037 |a CL0501000041  |b Safari Books Online 
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d OCLCF  |d ALSTP  |d OCLCO  |d OCL  |d OCLCQ  |d OCLCO  |d ORMDA  |d CJT 
049 |a MAIN 
050 4 |a QA76.73.P98 
100 1 |a Macarty, Matt,  |e speaker. 
245 1 0 |a Hands-on Python for finance /  |c Matt Macarty. 
264 1 |a [Place of publication not identified] :  |b Packt Publishing,  |c 2019. 
300 |a 1 online resource (1 streaming video file (5 hr., 25 min., 24 sec.)) 
306 |a 052600 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
337 |a video  |b v  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
344 |a digital  |2 rdatr 
347 |a video file  |2 rdaft 
380 |a Instructional films  |2 lcgft 
511 0 |a Presenter, Matt Macarty. 
500 |a Title from resource description page (Safari, viewed April 11, 2019). 
520 |a "This hands-on course helps both developers and quantitative analysts to get started with Python, and guides you through the most important aspects of using Python for quantitative finance. You will begin with a primer to Python and its various data structures. Then you will dive into third party libraries. You will work with Python libraries and tools designed specifically for analytical and visualization purposes. Then you will get an overview of cash flow across the timeline. You will also learn concepts like Time Series Evaluation, Forecasting, Linear Regression and also look at crucial aspects like Linear Models, Correlation and portfolio construction. Finally, you will compute Value at Risk (VaR) and simulate portfolio values using Monte Carlo Simulation which is a broader class of computational algorithms. With numerous practical examples through the course, you will develop a full-fledged framework for Monte Carlo, which is a class of computational algorithms and simulation-based derivatives and risk analytics."--Resource description page 
546 |a In English. 
650 0 |a Python (Computer program language)  |0 http://id.loc.gov/authorities/subjects/sh96008834 
650 0 |a Finance  |x Data processing.  |0 http://id.loc.gov/authorities/subjects/sh2020000036 
650 0 |a Object-oriented programming (Computer science)  |0 http://id.loc.gov/authorities/subjects/sh87007503 
650 0 |a Information visualization.  |0 http://id.loc.gov/authorities/subjects/sh2002000243 
650 6 |a Python (Langage de programmation) 
650 6 |a Finances  |x Informatique. 
650 6 |a Programmation orientée objet (Informatique) 
650 6 |a Visualisation de l'information. 
650 7 |a Finance  |x Data processing.  |2 fast  |0 (OCoLC)fst00924370 
650 7 |a Information visualization.  |2 fast  |0 (OCoLC)fst00973185 
650 7 |a Object-oriented programming (Computer science)  |2 fast  |0 (OCoLC)fst01042804 
650 7 |a Python (Computer program language)  |2 fast  |0 (OCoLC)fst01084736 
655 7 |a Instructional films.  |2 fast  |0 (OCoLC)fst01726236 
655 7 |a Instructional films.  |2 lcgft  |0 http://id.loc.gov/authorities/genreForms/gf2011026333 
655 7 |a Films de formation.  |2 rvmgf 
710 2 |a Packt Publishing,  |e publisher.  |0 http://id.loc.gov/authorities/names/no2012057420 
856 4 0 |u https://www.aspresolver.com/aspresolver.asp?MARC;4740652  |y Alexander Street 
856 4 0 |u https://go.oreilly.com/uchicago/library/view/-/9781789800975/?ar  |y O'Reilly 
929 |a oclccm 
999 f f |s e3614854-cc9d-42cb-8563-b54e0a8d2627  |i e191340d-5a15-4f6c-b34a-bd30e86db16b 
928 |t Library of Congress classification  |a QA76.73.P98  |l Online  |c UC-FullText  |u https://www.aspresolver.com/aspresolver.asp?MARC;4740652  |z Alexander Street  |u https://go.oreilly.com/uchicago/library/view/-/9781789800975/?ar  |z O'Reilly  |g ebooks  |i 13809392