ML at Twitter : a deep dive into Twitter's timeline /

Saved in:
Bibliographic Details
Author / Creator:Montez Halasz, Cibele, on-screen presenter.
Imprint:[Place of publication not identified] : O'Reilly, 2019.
Description:1 online resource (1 streaming video file (40 min., 44 sec.))
Language:English
Subject:
Format: E-Resource Video Streaming Video
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/13677708
Hidden Bibliographic Details
Varying Form of Title:Machine Learning at Twitter
Other authors / contributors:Banerjee, Satanjeev, on-screen presenter.
O'Reilly Artificial Intelligence Conference (2019 : New York, N.Y.) issuing body.
Notes:Title from title screen (viewed November 14, 2019).
Presenters, Cibele Montez Halasz, Satanjeev Banerjee.
Recorded at the 2019 O'Reilly Artificial Intelligence Conference in New York.
Summary:"Machine learning has allowed Twitter to drive engagement, promote healthier conversations, and deliver catered advertisements. Cibele Montez Halasz and Satanjeev Banerjee describe one of those use cases: timeline ranking. They share some of the optimizations that the team has made--from modeling to infrastructure--in order to have models that are both expressive and efficient. You'll explore the feature pipeline, modeling decisions, platform improvements, hyperparameter tuning, and architecture (alongside discretization and isotonic calibration) as well as some of the challenges Twitter faced by working with heavily text-based (sparse) data and some of the improvements the team made in its TensorFlow-based platform to deal with these use cases. Join in to gain a holistic view of one of Twitter's most prominent machine learning use cases."--Resource description page

MARC

LEADER 00000cgm a2200000 i 4500
001 13677708
006 m o c
007 cr cna||||||||
007 vz czazuu
008 191115s2019 xx 041 o vleng d
005 20241122232548.8
035 |a (OCoLC)1127651168 
035 9 |a (OCLCCM-CC)1127651168 
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d UMI  |d OCLCF  |d OCLCQ  |d OCLCO 
037 |a CL0501000081  |b Safari Books Online 
050 4 |a Q325.5 
049 |a MAIN 
100 1 |a Montez Halasz, Cibele,  |e on-screen presenter. 
245 1 0 |a ML at Twitter :  |b a deep dive into Twitter's timeline /  |c Cibele Montez Halasz, Satanjeev Banerjee. 
246 3 |a Machine Learning at Twitter 
264 1 |a [Place of publication not identified] :  |b O'Reilly,  |c 2019. 
300 |a 1 online resource (1 streaming video file (40 min., 44 sec.)) 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
337 |a video  |b v  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Title from title screen (viewed November 14, 2019). 
518 |a Recorded at the 2019 O'Reilly Artificial Intelligence Conference in New York. 
511 0 |a Presenters, Cibele Montez Halasz, Satanjeev Banerjee. 
520 |a "Machine learning has allowed Twitter to drive engagement, promote healthier conversations, and deliver catered advertisements. Cibele Montez Halasz and Satanjeev Banerjee describe one of those use cases: timeline ranking. They share some of the optimizations that the team has made--from modeling to infrastructure--in order to have models that are both expressive and efficient. You'll explore the feature pipeline, modeling decisions, platform improvements, hyperparameter tuning, and architecture (alongside discretization and isotonic calibration) as well as some of the challenges Twitter faced by working with heavily text-based (sparse) data and some of the improvements the team made in its TensorFlow-based platform to deal with these use cases. Join in to gain a holistic view of one of Twitter's most prominent machine learning use cases."--Resource description page 
610 2 0 |a Twitter (Firm)  |0 http://id.loc.gov/authorities/names/n2009037432 
610 2 7 |a Twitter (Firm)  |2 fast  |0 (OCoLC)fst01794912 
650 0 |a Machine learning.  |0 http://id.loc.gov/authorities/subjects/sh85079324 
650 0 |a Online social networks  |x Technological innovations. 
650 6 |a Apprentissage automatique. 
650 6 |a Réseaux sociaux (Internet)  |x Innovations. 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
700 1 |a Banerjee, Satanjeev,  |e on-screen presenter. 
711 2 |a O'Reilly Artificial Intelligence Conference  |d (2019 :  |c New York, N.Y.)  |j issuing body. 
856 4 0 |u https://go.oreilly.com//library/view/-/0636920339571/?ar  |y O'Reilly 
929 |a oclccm 
999 f f |s f1263066-c3f6-4c2c-8ff8-2780364ccf87  |i c49aee47-bfbe-4cb4-8a11-cffe3e7397f0 
928 |t Library of Congress classification  |a Q325.5  |l Online  |c UC-FullText  |u https://go.oreilly.com//library/view/-/0636920339571/?ar  |z O'Reilly  |g vidstream  |i 13820649