STOCHASTIC OPTIMIZATION FOR LARGE-SCALE MACHINE LEARNING.

Saved in:
Bibliographic Details
Author / Creator:CHAUHAN, VINOD KUMAR.
Imprint:[S.l.] : CRC PRESS, 2021.
Description:1 online resource
Language:English
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/13693303
Hidden Bibliographic Details
ISBN:9781000505610
1000505618
9781000505535
1000505537
9781003240167
100324016X
1032131756
9781032131757
Notes:Includes bibliographical references and index.
Summary:Advancements in the technology and availability of data sources have led to the `Big Data' era. Working with large data offers the potential to uncover more fine-grained patterns and take timely and accurate decisions, but it also creates a lot of challenges such as slow training and scalability of machine learning models. One of the major challenges in machine learning is to develop efficient and scalable learning algorithms, i.e., optimization techniques to solve large scale learning problems. Stochastic Optimization for Large-scale Machine Learning identifies different areas of improvement and recent research directions to tackle the challenge. Developed optimisation techniques are also explored to improve machine learning algorithms based on data access and on first and second order optimisation methods. Key Features: Bridges machine learning and Optimisation. Bridges theory and practice in machine learning. Identifies key research areas and recent research directions to solve large-scale machine learning problems. Develops optimisation techniques to improve machine learning algorithms for big data problems. The book will be a valuable reference to practitioners and researchers as well as students in the field of machine learning.
Other form:Print version: 9781000505610
Print version: 1032131756 9781032131757
Standard no.:10.1201/9781003240167

MARC

LEADER 00000cam a2200000M 4500
001 13693303
006 m o d
007 cr |n|||||||||
008 211024s2021 xx o 0|| 0 eng d
005 20241127153827.2
035 |a (OCoLC)1280274276  |z (OCoLC)1280195745  |z (OCoLC)1280196440  |z (OCoLC)1280275195 
035 9 |a (OCLCCM-CC)1280274276 
040 |a YDX  |b eng  |c YDX  |d UKMGB  |d N$T  |d UKAHL  |d OCLCF  |d OCLCO  |d ORMDA  |d OCLCQ  |d OCLCO  |d OCLCL 
015 |a GBC1G2770  |2 bnb 
016 7 |a 020341741  |2 Uk 
019 |a 1280195745  |a 1280196440  |a 1280275195 
020 |a 9781000505610  |q (electronic bk.) 
020 |a 1000505618  |q (electronic bk.) 
020 |a 9781000505535  |q (electronic bk.) 
020 |a 1000505537  |q (electronic bk.) 
020 |a 9781003240167  |q (ebook) 
020 |a 100324016X 
020 |z 1032131756 
020 |z 9781032131757 
024 8 |a 10.1201/9781003240167  |2 doi 
037 |a 9781000505610  |b Ingram Content Group 
037 |a 9781000505610  |b O'Reilly Media 
050 4 |a Q325.5 
049 |a MAIN 
100 1 |a CHAUHAN, VINOD KUMAR. 
245 1 0 |a STOCHASTIC OPTIMIZATION FOR LARGE-SCALE MACHINE LEARNING. 
260 |a [S.l.] :  |b CRC PRESS,  |c 2021. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
336 |a still image  |b sti  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
520 |a Advancements in the technology and availability of data sources have led to the `Big Data' era. Working with large data offers the potential to uncover more fine-grained patterns and take timely and accurate decisions, but it also creates a lot of challenges such as slow training and scalability of machine learning models. One of the major challenges in machine learning is to develop efficient and scalable learning algorithms, i.e., optimization techniques to solve large scale learning problems. Stochastic Optimization for Large-scale Machine Learning identifies different areas of improvement and recent research directions to tackle the challenge. Developed optimisation techniques are also explored to improve machine learning algorithms based on data access and on first and second order optimisation methods. Key Features: Bridges machine learning and Optimisation. Bridges theory and practice in machine learning. Identifies key research areas and recent research directions to solve large-scale machine learning problems. Develops optimisation techniques to improve machine learning algorithms for big data problems. The book will be a valuable reference to practitioners and researchers as well as students in the field of machine learning. 
650 0 |a Machine learning  |x Statistical methods. 
650 0 |a Big data.  |0 http://id.loc.gov/authorities/subjects/sh2012003227 
650 0 |a Mathematical optimization.  |0 http://id.loc.gov/authorities/subjects/sh85082127 
650 0 |a Stochastic processes.  |0 http://id.loc.gov/authorities/subjects/sh85128181 
650 2 |a Stochastic Processes  |0 https://id.nlm.nih.gov/mesh/D013269 
650 6 |a Apprentissage automatique  |x Méthodes statistiques. 
650 6 |a Données volumineuses. 
650 6 |a Optimisation mathématique. 
650 6 |a Processus stochastiques. 
650 7 |a Big data  |2 fast 
650 7 |a Machine learning  |x Statistical methods  |2 fast 
650 7 |a Mathematical optimization  |2 fast 
650 7 |a Stochastic processes  |2 fast 
758 |i has work:  |a Stochastic optimization for large-scale machine learning (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGvjJbrgfdDjQ4k4hgY8hb  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |z 9781000505610 
776 0 8 |i Print version:  |z 1032131756  |z 9781032131757  |w (OCoLC)1257577136 
856 4 0 |u https://go.oreilly.com/uchicago/library/view/-/9781000505610/?ar  |y O'Reilly 
929 |a oclccm 
999 f f |s b29c4ea2-1110-4575-ac14-e7c27769adbe  |i de100466-dbe9-488f-89f9-0bd3c1389e7b 
928 |t Library of Congress classification  |a Q325.5  |l Online  |c UC-FullText  |u https://go.oreilly.com/uchicago/library/view/-/9781000505610/?ar  |z O'Reilly  |g ebooks  |i 13836250