LOW-CODE AI : a practical project-driven introduction to machine learning /

Saved in:
Bibliographic Details
Author / Creator:Stripling, Gwendolyn, author.
Imprint:Sebastopol, CA : O'Reilly Media, Inc., 2023.
Description:1 online resource
Language:English
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/13712106
Hidden Bibliographic Details
Varying Form of Title:Low-code artificial intelligence
Other authors / contributors:Abel, Michael, author.
ISBN:9781098146795
1098146794
1098146824
9781098146825
Summary:Take a data-first and use-case-driven approach with Low-Code AI to understand machine learning and deep learning concepts. This hands-on guide presents three problem-focused ways to learn no-code ML using AutoML, low-code using BigQuery ML, and custom code using scikit-learn and Keras. In each case, you'll learn key ML concepts by using real-world datasets with realistic problems. Business and data analysts get a project-based introduction to ML/AI using a detailed, data-driven approach: loading and analyzing data; feeding data into an ML model; building, training, and testing; and deploying the model into production. Authors Michael Abel and Gwendolyn Stripling show you how to build machine learning models for retail, healthcare, financial services, energy, and telecommunications. You'll learn how to: Distinguish between structured and unstructured data and the challenges they present Visualize and analyze data Preprocess data for input into a machine learning model Differentiate between the regression and classification supervised learning models Compare different ML model types and architectures, from no code to low code to custom training Design, implement, and tune ML models Export data to a GitHub repository for data management and governance.
Other form:Print version: 1098146824 9781098146825

MARC

LEADER 00000cam a2200000Ma 4500
001 13712106
006 m o d
007 cr |n|||||||||
008 230918s2023 cau o 000 0 eng d
005 20241127154459.6
035 |a (OCoLC)1397799769  |z (OCoLC)1398279086 
035 9 |a (OCLCCM-CC)1397799769 
040 |a YDX  |b eng  |c YDX  |d ORMDA  |d N$T  |d UKAHL  |d OCLCF 
019 |a 1398279086 
020 |a 9781098146795  |q (electronic bk.) 
020 |a 1098146794  |q (electronic bk.) 
020 |z 1098146824 
020 |z 9781098146825 
037 |a 9781098146818  |b O'Reilly Media 
050 4 |a Q335 
049 |a MAIN 
100 1 |a Stripling, Gwendolyn,  |e author. 
245 1 0 |a LOW-CODE AI :  |b a practical project-driven introduction to machine learning /  |c Gwendolyn Stripling & Michael Abel. 
246 3 |a Low-code artificial intelligence 
260 |a Sebastopol, CA :  |b O'Reilly Media, Inc.,  |c 2023. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a Take a data-first and use-case-driven approach with Low-Code AI to understand machine learning and deep learning concepts. This hands-on guide presents three problem-focused ways to learn no-code ML using AutoML, low-code using BigQuery ML, and custom code using scikit-learn and Keras. In each case, you'll learn key ML concepts by using real-world datasets with realistic problems. Business and data analysts get a project-based introduction to ML/AI using a detailed, data-driven approach: loading and analyzing data; feeding data into an ML model; building, training, and testing; and deploying the model into production. Authors Michael Abel and Gwendolyn Stripling show you how to build machine learning models for retail, healthcare, financial services, energy, and telecommunications. You'll learn how to: Distinguish between structured and unstructured data and the challenges they present Visualize and analyze data Preprocess data for input into a machine learning model Differentiate between the regression and classification supervised learning models Compare different ML model types and architectures, from no code to low code to custom training Design, implement, and tune ML models Export data to a GitHub repository for data management and governance. 
650 0 |a Artificial intelligence.  |0 http://id.loc.gov/authorities/subjects/sh85008180 
650 0 |a Machine learning.  |0 http://id.loc.gov/authorities/subjects/sh85079324 
650 7 |a Artificial intelligence.  |2 fast  |0 (OCoLC)fst00817247 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
700 1 |a Abel, Michael,  |e author. 
776 0 8 |i Print version:  |z 1098146824  |z 9781098146825  |w (OCoLC)1375288944 
856 4 0 |u https://go.oreilly.com/uchicago/library/view/-/9781098146818/?ar  |y O'Reilly 
929 |a oclccm 
999 f f |s be29b993-2ff5-4a3e-a7cc-d1cd8d24130b  |i d49829ee-fa24-4e89-92c1-d0e8feaadb77 
928 |t Library of Congress classification  |a Q335  |l Online  |c UC-FullText  |u https://go.oreilly.com/uchicago/library/view/-/9781098146818/?ar  |z O'Reilly  |g ebooks  |i 13855042