Beginning data analysis with Python and Jupyter : use powerful industry-standard tools to unlock new, actionable insight from your existing data /

Saved in:
Bibliographic Details
Author / Creator:Galea, Alex, author.
Imprint:Birmingham, UK : Packt Publishing, 2018.
Description:1 online resource (1 volume) : illustrations
Language:English
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/14139320
Hidden Bibliographic Details
ISBN:9781789534658
1789534658
9781789532029
1789532027
Digital file characteristics:data file
Notes:Includes index.
Online resource; title from cover (Safari, viewed July 18, 2018).
Summary:Getting started with data science doesn't have to be an uphill battle. This step-by-step guide is ideal for beginners who know a little Python and are looking for a quick, fast-paced introduction. About This Book Get up and running with the Jupyter ecosystem and some example datasets Learn about key machine learning concepts like SVM, KNN classifiers and Random Forests Discover how you can use web scraping to gather and parse your own bespoke datasets Who This Book Is For This book is ideal for professionals with a variety of job descriptions across large range of industries, given the rising popularity and accessibility of data science. You'll need some prior experience with Python, with any prior work with libraries like Pandas, Matplotlib and Pandas providing you a useful head start. What You Will Learn Identify potential areas of investigation and perform exploratory data analysis Plan a machine learning classification strategy and train classification models Use validation curves and dimensionality reduction to tune and enhance your models Scrape tabular data from web pages and transform it into Pandas DataFrames Create interactive, web-friendly visualizations to clearly communicate your findings In Detail Get to grips with the skills you need for entry-level data science in this hands-on Python and Jupyter course. You'll learn about some of the most commonly used libraries that are part of the Anaconda distribution, and then explore machine learning models with real datasets to give you the skills and exposure you need for the real world. We'll finish up by showing you how easy it can be to scrape and gather your own data from the open web, so that you can apply your new skills in an actionable context. Style and approach This book covers every aspect of the standard data-workflow process within a day, along with theory, practical hands-on coding, and relatable illustrations.

MARC

LEADER 00000cam a2200000 i 4500
001 14139320
005 20250226151534.2
006 m o d
007 cr unu||||||||
008 180723s2018 enka o 001 0 eng d
035 |a (OCoLC)1045429050 
035 9 |a (OCLCCM-CC)1045429050 
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d STF  |d OCLCF  |d TOH  |d DEBBG  |d TEFOD  |d CEF  |d G3B  |d S9I  |d TEFOD  |d N$T  |d UAB  |d CZL  |d OCLCQ  |d OCLCO  |d NZAUC  |d OCLCQ  |d OCLCO 
020 |a 9781789534658  |q (electronic bk.) 
020 |a 1789534658  |q (electronic bk.) 
020 |z 9781789532029 
020 |z 1789532027 
037 |a CL0500000980  |b Safari Books Online 
037 |a 7CD25672-E8AE-4808-815E-C8B79E7890E5  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a QA76.73.P98 
072 7 |a COM  |x 089000  |2 bisacsh 
072 7 |a COM  |x 051360  |2 bisacsh 
049 |a MAIN 
100 1 |a Galea, Alex,  |e author. 
245 1 0 |a Beginning data analysis with Python and Jupyter :  |b use powerful industry-standard tools to unlock new, actionable insight from your existing data /  |c by Alex Galea. 
264 1 |a Birmingham, UK :  |b Packt Publishing,  |c 2018. 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
588 0 |a Online resource; title from cover (Safari, viewed July 18, 2018). 
500 |a Includes index. 
520 |a Getting started with data science doesn't have to be an uphill battle. This step-by-step guide is ideal for beginners who know a little Python and are looking for a quick, fast-paced introduction. About This Book Get up and running with the Jupyter ecosystem and some example datasets Learn about key machine learning concepts like SVM, KNN classifiers and Random Forests Discover how you can use web scraping to gather and parse your own bespoke datasets Who This Book Is For This book is ideal for professionals with a variety of job descriptions across large range of industries, given the rising popularity and accessibility of data science. You'll need some prior experience with Python, with any prior work with libraries like Pandas, Matplotlib and Pandas providing you a useful head start. What You Will Learn Identify potential areas of investigation and perform exploratory data analysis Plan a machine learning classification strategy and train classification models Use validation curves and dimensionality reduction to tune and enhance your models Scrape tabular data from web pages and transform it into Pandas DataFrames Create interactive, web-friendly visualizations to clearly communicate your findings In Detail Get to grips with the skills you need for entry-level data science in this hands-on Python and Jupyter course. You'll learn about some of the most commonly used libraries that are part of the Anaconda distribution, and then explore machine learning models with real datasets to give you the skills and exposure you need for the real world. We'll finish up by showing you how easy it can be to scrape and gather your own data from the open web, so that you can apply your new skills in an actionable context. Style and approach This book covers every aspect of the standard data-workflow process within a day, along with theory, practical hands-on coding, and relatable illustrations. 
650 0 |a Python (Computer program language)  |0 http://id.loc.gov/authorities/subjects/sh96008834 
650 0 |a Information visualization.  |0 http://id.loc.gov/authorities/subjects/sh2002000243 
650 0 |a Electronic data processing.  |0 http://id.loc.gov/authorities/subjects/sh85042288 
650 0 |a Data mining.  |0 http://id.loc.gov/authorities/subjects/sh97002073 
650 2 |a Data Mining  |0 https://id.nlm.nih.gov/mesh/D057225 
650 6 |a Python (Langage de programmation) 
650 6 |a Visualisation de l'information. 
650 6 |a Exploration de données (Informatique) 
650 7 |a COMPUTERS  |x Data Visualization.  |2 bisacsh 
650 7 |a COMPUTERS  |x Programming Languages  |x Python.  |2 bisacsh 
650 7 |a Data mining  |2 fast 
650 7 |a Electronic data processing  |2 fast 
650 7 |a Information visualization  |2 fast 
650 7 |a Python (Computer program language)  |2 fast 
856 4 0 |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=e000xna&AN=1827494  |y eBooks on EBSCOhost 
929 |a oclccm 
999 f f |i faa75f14-67f3-42a5-aa4a-79470b899847  |s 12f0cfd3-47f2-4028-bb20-48f4b63e32d8 
928 |t Library of Congress classification  |a QA76.73.P98  |l Online  |c UC-FullText  |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=e000xna&AN=1827494  |z eBooks on EBSCOhost  |g ebooks  |i 14282625