Longitudinal structural equation modeling with Mplus : a latent state-trait perspective /

Saved in:
Bibliographic Details
Author / Creator:Geiser, Christian, author.
Imprint:New York : Guilford Publications, 2021.
©2021
Description:1 online resource (371 pages)
Language:English
Series:Methodology in the Social Sciences Ser.
Methodology in the Social Sciences Ser.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/14141252
Hidden Bibliographic Details
ISBN:9781462544264
1462544266
9781462544240
146254424X
9781462538782
1462538789
Notes:Description based upon print version of record.
3.2.5 Mplus Application.
Includes bibliographical references and index.
Summary:"An in-depth guide to executing longitudinal confirmatory factor analysis (CFA) and structural equation modeling (SEM) in Mplus, this book uses latent state-trait (LST) theory as a unifying conceptual framework, including the relevant coefficients of consistency, occasion-specificity, and reliability. Following a standard format, chapters review the theoretical underpinnings, strengths, and limitations of the various models; present data examples; and demonstrate each model's application and interpretation in Mplus, with numerous screen shots and output excerpts. Coverage encompasses both traditional models (autoregressive, change score, and growth curve models) and LST models, for analyzing single- and multiple-indicator data. The book discusses measurement equivalence testing, intensive longitudinal data modeling, and missing data handling, and provides strategies for model selection and reporting of results. User-friendly features include special-topic boxes, chapter summaries, and suggestions for further reading. The companion website features data sets, annotated syntax files, and output for all of the examples"--
Other form:Print version: Geiser, Christian Longitudinal Structural Equation Modeling with Mplus : A Latent State-Trait Perspective New York : Guilford Publications,c2020

MARC

LEADER 00000cam a2200000Mi 4500
001 14141252
005 20250226152110.0
006 m o d
007 cr |||||||||||
008 201121s2021 nyu ob 001 0 eng d
035 |a (OCoLC)1223097731  |z (OCoLC)1193591665  |z (OCoLC)1195446727 
035 9 |a (OCLCCM-CC)1223097731 
040 |a EBLCP  |b eng  |e rda  |c EBLCP  |d EBLCP  |d YDX  |d OCLCF  |d N$T  |d UKAHL  |d OCLCO  |d OSU  |d OCLCO  |d OCLCQ  |d OCLCO 
066 |c (S 
019 |a 1193591665  |a 1195446727 
020 |a 9781462544264  |q (ebook) 
020 |a 1462544266  |q (ebook) 
020 |z 9781462544240  |q (hardcover) 
020 |z 146254424X  |q (hardcover) 
020 |z 9781462538782  |q (paperback) 
020 |z 1462538789  |q (paperback) 
050 4 |a QA278.3  |b .G45 2020 
049 |a MAIN 
100 1 |a Geiser, Christian,  |e author. 
245 1 0 |a Longitudinal structural equation modeling with Mplus :  |b a latent state-trait perspective /  |c Christian Geiser. 
264 1 |a New York :  |b Guilford Publications,  |c 2021. 
264 4 |c ©2021 
300 |a 1 online resource (371 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Methodology in the Social Sciences Ser. 
500 |a Description based upon print version of record. 
504 |a Includes bibliographical references and index. 
505 0 |a Cover -- Half Title Page -- Series Page -- Title Page -- Copyright -- Series Editor's Note -- Preface -- Brief Contents -- List of Abbreviations -- Guide to Statistical Symbols -- 1. A Measurement Theoretical Framework for Longitudinal Data: Introduction to Latent State-Trait Theory -- 2. Single-Factor Longitudinal Models for Single-Indicator Data -- 3. Multifactor Longitudinal Models for Single-Indicator Data -- 4. Latent State Models and Measurement Equivalence Testing in Longitudinal Studies -- 5. Multiple-Indicator Longitudinal Models -- 6. Modeling Intensive Longitudinal Data 
505 8 |a 7. Missing Data Handling -- 8. How to Choose between Models and Report the Results -- Extended Contents -- List of Abbreviations -- Guide to Statistical Symbols -- 1. A Measurement Theoretical Framework for Longitudinal Data: Introduction to Latent State-Trait Theory -- 1.1 Introduction -- 1.2 Latent State-Trait Theory -- 1.2.1 Introduction -- 1.2.2 Basic Idea -- 1.2.3 Random Experiment -- 1.2.4 Variables in LST-R Theory -- BOX 1.1. Key Concepts and Definitions in CTT -- 1.2.5 Properties -- 1.2.6 Coefficients -- BOX 1.2. Properties of the Latent Variables in LST-R Theory -- 1.3 Chapter Summary 
505 8 |a 1.4 Recommended Readings -- 2. Single-Factor Longitudinal Models for Single-Indicator Data -- 2.1 Introduction -- 2.2 The Random Intercept Model -- 2.2.1 Introduction -- 2.2.2 Model Description -- BOX 2.1. Available Information, Model Degrees of Freedom, and Model Identification in Single-Indicator Longitudinal Designs -- BOX 2.2. Defining the Random Intercept Model Based on LST-R Theory -- 2.2.3 Variance Decomposition and Reliability Coefficient -- 2.2.4 Mplus Application -- BOX 2.3. Model Fit Assessment and Model Comparisons -- 2.2.5 Summary -- 2.3 The Random and Fixed Intercepts Model 
505 8 |a 2.5 Chapter Summary -- 2.6 Recommended Reading -- Note -- 3. Multifactor Longitudinal Models for Single-Indicator Data -- 3.1 Introduction -- 3.2 The Simplex Model -- 3.2.1 Introduction -- 3.2.2 Model Description -- BOX 3.1. Defining the Simplex Model Based on LST-R Theory -- BOX 3.2. Should a Researcher Constrain State Residual or Measurement Error Variances in the Simplex Model? -- 3.2.3 Variance Decomposition and Coefficients -- 3.2.4 Assessing Stability and Change in the Simplex Model -- BOX 3.3. Endogenous versus Exogenous Variables in Structural Equation Models and Mplus 
500 |a 3.2.5 Mplus Application. 
520 |a "An in-depth guide to executing longitudinal confirmatory factor analysis (CFA) and structural equation modeling (SEM) in Mplus, this book uses latent state-trait (LST) theory as a unifying conceptual framework, including the relevant coefficients of consistency, occasion-specificity, and reliability. Following a standard format, chapters review the theoretical underpinnings, strengths, and limitations of the various models; present data examples; and demonstrate each model's application and interpretation in Mplus, with numerous screen shots and output excerpts. Coverage encompasses both traditional models (autoregressive, change score, and growth curve models) and LST models, for analyzing single- and multiple-indicator data. The book discusses measurement equivalence testing, intensive longitudinal data modeling, and missing data handling, and provides strategies for model selection and reporting of results. User-friendly features include special-topic boxes, chapter summaries, and suggestions for further reading. The companion website features data sets, annotated syntax files, and output for all of the examples"--  |c Provided by publisher. 
630 0 0 |a Mplus.  |0 http://id.loc.gov/authorities/names/n2011042550 
630 0 7 |a Mplus  |2 fast 
650 0 |a Structural equation modeling.  |0 http://id.loc.gov/authorities/subjects/sh2005008800 
650 0 |a Longitudinal method.  |0 http://id.loc.gov/authorities/subjects/sh85078296 
650 6 |a Modèles d'équations structurales. 
650 6 |a Méthode longitudinale. 
650 7 |a Longitudinal method  |2 fast 
650 7 |a Structural equation modeling  |2 fast 
776 0 8 |i Print version:  |a Geiser, Christian  |t Longitudinal Structural Equation Modeling with Mplus : A Latent State-Trait Perspective  |d New York : Guilford Publications,c2020 
830 0 |a Methodology in the Social Sciences Ser. 
856 4 0 |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=e000xna&AN=2473982  |y eBooks on EBSCOhost 
880 8 |6 505-00/(S  |a 2.3.1 Introduction -- 2.3.2 Model Description -- BOX 2.4. Means of Linear Combinations -- BOX 2.5. Defining the Random and Fixed Intercepts Model Based on LST-R Theory -- 2.3.3 Variance Decomposition and Reliability Coefficient -- 2.3.4 Mplus Application -- 2.3.5 Summary -- 2.4 The ξ-Congeneric Model -- 2.4.1 Introduction -- 2.4.2 Model Description -- BOX 2.6. Defining the ξ-Congeneric Model Based on LST Theory -- 2.4.3 Variance Decomposition and Reliability Coefficient -- 2.4.4 Mplus Application -- BOX 2.7. The MODEL CONSTRAINT and MODEL TEST Options in Mplus -- 2.4.5 Summary 
929 |a oclccm 
999 f f |i c9ae66f3-a793-4f7b-a1a6-c17fb74ce5fe  |s ad34588c-310f-410c-bfaa-be6e7a5b2d62 
928 |t Library of Congress classification  |a QA278.3.G45 2020  |l Online  |c UC-FullText  |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=e000xna&AN=2473982  |z eBooks on EBSCOhost  |g ebooks  |i 14284558