Introduction to symbolic logic and its applications /

Saved in:
Bibliographic Details
Author / Creator:Carnap, Rudolf, 1891-1970
Imprint:New York : Dover Publications, [1958]
Description:241 p. : ill. ; 21 cm.
Language:English
Undetermined
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/1439000
Hidden Bibliographic Details
ISBN:0486604535
Notes:Includes bibliographical references (p.231-233) and index.
Table of Contents:
  • Part 1. System of symbolic logic
  • Chapter A. The simple language A
  • 1. The problem of symbolic logic
  • a. The purpose of symbolic language
  • b. The development of symbolic logic
  • 2. Individual constants and predicates
  • a. Individual constants and predicates
  • b. Sentential constants
  • c. Illustrative predicates
  • 3. Sentential connectives
  • a. Descriptive and logical signs
  • b. Connective signs
  • c. Omission of parentheses
  • d. Exercises
  • 4. Truth-tables
  • a. Truth-tables
  • b. Truth-conditions and meaning
  • 5. L-concepts
  • a. Tautologies
  • b. Range and L-truth
  • 6. L-implication and L-equivalence
  • a. L-implication and L-equivalence
  • b. Content
  • c. Classes of sentences
  • d. Examples and exercises
  • 7. Sentential variables
  • a. Variables and sentential formulas
  • b. Sentential variables
  • 8. Sentential formulas that are tautologies
  • a. Conditional formulas that are tautologies
  • b. Interchangeability
  • c. Biconditional formulas that are tautologies
  • d. Derivations
  • 9. Universal and existential sentences
  • a. Individual variables and quantifiers
  • b. Multiple quantification
  • c. Universal conditionals
  • d. Translation from the word-langage
  • 10. Predicate variables
  • a. Predicate variables
  • b. Intensions and extensions
  • 11. Value-assignments
  • 12. Substitutions
  • a. Substitutions for sentential variables
  • b. Substitutions for individual variables
  • c. Substitutions for predicate variables
  • d. Theorems on substitutions
  • e. Example and exercises
  • 13. Theorems on quantifiers
  • 14. L-true formulas with quantifiers
  • a. L-true conditionals
  • b. L-true biconditionals
  • c. Exercises
  • 15. Definitions
  • a. Interchangeability
  • b. Definitions
  • c. Examples
  • 16. Predicates of higher levels
  • a. Predicates and predicate variables of different levels
  • b. Raising levels
  • c. Examples and exercises
  • 17. Identity. Cardinal numbers
  • a. Identity
  • b. Examples and exercises
  • c. Cardinal numbers
  • 18. Functors
  • a. Functors. Domains of a relation
  • b. Conditions permitting the introduction of functors
  • 19. Ismorphism
  • Chapter B. The language B
  • 20. Semantical and syntactical systems
  • 21. Rules of formation for language B
  • a. The language B
  • b. The system of types
  • c. Russell's antinomy
  • 21. Rules of formation for language B-continued
  • d. Sentential formulas and sentences in B
  • e. Definitions in B
  • 22. Rules of transformation for language B
  • a. Primitive sentence schemata
  • b. Explanatory notes on the separate primitive sentences
  • c. Rules of inference
  • 23. Proofs and derivations in language B
  • a. Proofs
  • b. Derivations
  • 24. Theorems on provability and derivability in language B
  • a. General theorems for B
  • b. Interchangeability
  • 25. The semantical system for language B
  • a. Value-assignments and evaluations
  • b. Rules of designation
  • c. Truth
  • 26. Relations between syntactical and semantical systems
  • a. Interpretation of a language
  • b. On the possibility of a formalization of syntax and semantics
  • Chapter C. The extended language C
  • 27. The language C
  • 28. Compound predicate expressions
  • a. Predicate expressions
  • b. Universality
  • c. Class terminology
  • d. Exercises
  • 29. Identity. Extensionality
  • a. Identity
  • b. Regarding the types of logical constants
  • c. Extensionality
  • 30. Relative product. Powers of relations
  • a. Relative product
  • b. Powers of relations
  • c. Supplementary remarks
  • 31. Various kinds of relations
  • a. Representations of relations
  • b. "Symmetry, transitivity, reflexivity"
  • c. Theorems about relations
  • d. Linear order: series and simple order
  • e. One-oneness
  • 32. "Additional logical predicates, functors and connectives"
  • a. The null class and the universal class
  • b. Union class and intersection class
  • c. Connections between relations and classes
  • d. Theorems
  • e. Enumeration classes
  • 33. The ?-operator
  • a. The ?-operator
  • b. Rule for the ?-operator
  • c. Definitions with the help of ?-expressions
  • d. The R's of b
  • 34. "Equivalence classes, structures, cardinal numbers"
  • a. Equivalence relations and equivalence classes
  • b. Structures
  • c. Cardinal numbers
  • d. Structural properties
  • 35. Individual descriptions
  • a. Descriptions
  • b. Relational descriptions
  • 36. Heredity and ancestral relations
  • a. Heredity
  • b. Ancestral relations
  • c. R-families
  • 37. Finite and infinite
  • a. Progressions
  • b. Sum and predecessor relation
  • c. Inductive cardinal numbers
  • d. Reflexive classes
  • e. Assumption of infinity
  • 38. Continuity
  • a. "Well-ordered relations, dense relations, rational orders"
  • b. Dedekind continuity and Cantor continuity
  • Part 2. Application of symbolic logic
  • Chapter D. Forms and methods of the construction of languages
  • 39. Thing languages
  • a. Things and their slices
  • b. Three forms of the thing language; language form I
  • c. Language form II
  • d. Language form III
  • 40. Coordinate languages
  • a. Coordinate language with natural numbers
  • b. Recursive definitions
  • c. Coordinate language with integers
  • d. Real numbers
  • 41. Quantitative concepts
  • a. Quantitative concepts in thing languages
  • b. Formulation of laws
  • c. Quantitative concepts in coordinate languages
  • 42. The axiomatic method
  • a. Axioms and theorems
  • b. Formalization and symbolization; interpretations and models
  • c. "Consitency, completeness, monomorphism"
  • d. The explicity concept
  • e. Concerning the axiom systems (ASs) in Part Two of this book
  • Chapter E. Axiom systems (ASs) for set theory and arithmetic
  • 43. AS for set theory
  • a. The Zermelo-Fraenkel AS
  • b. The axiom of restriction
  • 53. AS involving biological concepts
  • a. Division and fusion
  • b. "Hierarchies, cells, organisms"
  • 54. AS for kinship relations
  • a. Biological concepts of kinship
  • b. Legal concepts of kinship
  • Appendix
  • 55. Problems in the application of symbolic logic
  • a. Set theory and arithmetic
  • b. Geometry
  • c. Physics
  • d. Biology
  • 56. Bibliography
  • 57. General guide to the literature
  • Index
  • Symbols of the symbolic language of the metalanguage