SAS system for statistical graphics /

Saved in:
Bibliographic Details
Author / Creator:Friendly, Michael
Edition:1st ed.
Imprint:Cary, NC : SAS Institute, c1991.
Description:xviii, 697 p. : ill., maps ; 28 cm.
Language:English
Series:SAS series in statistical applications
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/1477608
Hidden Bibliographic Details
Other authors / contributors:SAS Institute
ISBN:1555444415
Notes:Includes bibliographical references (p. 683-690) and index.
Table of Contents:
  • Reference Aids
  • Acknowledgments
  • About the Author
  • Using This Book
  • Part 1. Introduction
  • Chapter 1. Introduction to Statistical Graphics
  • 1.1. Introduction
  • 1.2. Advantages of Plotting Data
  • 1.3. The Roles of Graphics in Data Analysis
  • 1.4. Psychological Principles of Data Display
  • 1.5. Graphical Standards for Data Display
  • 1.6. Strategies for Graphical Data Analysis
  • 1.7. Data Sets
  • Part 2. Univariate Displays
  • Chapter 2. Graphical Methods for Univariate Data
  • 2.1. Introduction
  • 2.2. Histograms and Bar Charts
  • 2.3. Stem and Leaf Displays
  • 2.4. Boxplots
  • 2.5. Dot Charts
  • Chapter 3. Plotting Theoretical and Empirical Distributions
  • 3.1. Introduction
  • 3.2. Plotting Theoretical Statistical Distributions
  • 3.3. Bivariate Normal Distribution
  • 3.4. Histogram Smoothing and Density Estimation
  • 3.5. Quantile Plots
  • 3.6. Plots for Assessing Symmetry
  • Part 3. Bivariate Displays
  • Chapter 4. Scatterplots
  • 4.1. Introduction
  • 4.2. Simple Scatterplots
  • 4.3. Labeling Observations
  • 4.4. Interpolated Curves and Smoothings
  • 4.5. Enhanced Scatterplots
  • 4.6. Plotting Discrete Data
  • 4.7. Displaying a Third Variable on a Scatterplot
  • 4.8. Three-Dimensional Plots
  • Chapter 5. Plotting Regression Data
  • 5.1. Introduction
  • 5.2. Plotting Data, Regression Curves, and Confidence Limits
  • 5.3. Regression with Several Groups
  • 5.4. Validity of Assumptions: Plotting Residuals
  • 5.5. Partial Regression Plots
  • 5.6. Multiple Regression Response Surface
  • 5.7. Plots of C[subscript P] against P for Variable Selection
  • 5.8. Regression with Geographic Data
  • Part 4. Graphical Comparisons and Experimental Design Data
  • Chapter 6. Comparing Groups
  • 6.1. Introduction
  • 6.2. Quantile Comparison Plots for Pairs of Distributions
  • 6.3. Comparative Boxplots
  • 6.4. Diagnostic Plot for Equalizing Variability
  • Chapter 7. Plotting ANOVA Data
  • 7.1. Introduction
  • 7.2. Plotting Means in a One-Way Design
  • 7.3. Plotting Means for Two-Factor Designs
  • 7.4. Plotting Interactions
  • 7.5. Repeated Measure Designs
  • 7.6. Displaying Two-Way Tables for n=1 Designs
  • 7.7. Plotting Power Curves for ANOVA Designs
  • Part 5. Multivariate Data
  • Chapter 8. Displaying Multivariate Data
  • 8.1. Introduction
  • 8.2. Glyph Plots
  • 8.3. Draftsman's Display and Scatterplot Matrix
  • 8.4. Star Plots
  • 8.5. Profile Plots
  • 8.6. Andrews Function Plots
  • 8.7. Biplot: Plotting Variables and Observations Together
  • Chapter 9. Multivariate Statistical Methods
  • 9.1. Introduction
  • 9.2. Assessing Multivariate Normality
  • 9.3. Detecting Multivariate Outliers
  • 9.4. Plotting Principal Components and Component Scores
  • 9.5. Discriminating among Groups
  • Chapter 10. Displaying Categorical Data
  • 10.1. Introduction
  • 10.2. Rectangular Displays
  • 10.3. Correspondence Analysis
  • Part 6. Appendices
  • Appendix 1. Macro Programs
  • A1.1. Introduction
  • A1.2. The BIPLOT Macro
  • A1.3. The BOXANNO Macro
  • A1.4. The BOXPLOT Macro
  • A1.5. The CONTOUR Macro
  • A1.6. The CORRESP Macro
  • A1.7. The DENSITY Macro
  • A1.8. The DOTPLOT Macro
  • A1.9. The LOWESS Macro
  • A1.10. The NQPLOT Macro
  • A1.11. The OUTLIER Macro
  • A1.12. The PARTIAL Macro
  • A1.13. The SCATMAT Macro
  • A1.14. The STARS Macro
  • A1.15. The SYMPLOT Macro
  • A1.16. The TWOWAY Macro
  • Appendix 2. Data Sets
  • A2.1. Introduction
  • A2.2. The AUTO Data Set: Automobiles Data
  • A2.3. The BASEBALL Data Set: Baseball Data
  • A2.4. The CITYTEMP Data Set: City Temperatures Data
  • A2.5. The CRIME Data Set: State Crime Data
  • A2.6. The DIABETES Data Set: Diabetes Data
  • A2.7. The DRAFTUSA Data Set: Draft Lottery Data
  • A2.8. The DUNCAN Data Set: Duncan Occupational Prestige Data
  • A2.9. The FUEL Data Set: Fuel Consumption Data
  • A2.10. The IRIS Data Set: Iris Data
  • A2.11. The NATIONS Data Set: Infant Mortality Data
  • A2.12. The SALARY Data Set: Salary Survey Data
  • A2.13. The SPENDING Data Set: School Spending Data
  • A2.14. The TEETH Data Set: Mammals' Teeth Data
  • A2.15. The WHEAT Data Set: Broadbalk Wheat Data
  • Appendix 3. Color Output
  • References
  • Index