M-ideals in Banach spaces and Banach algebras /

Saved in:
Bibliographic Details
Author / Creator:Harmand, P. (Peter), 1953-
Imprint:Berlin ; New York : Springer-Verlag, c1993.
Description:viii, 287 p. ; 24 cm.
Language:English
Series:Lecture notes in mathematics ; 1547
Lecture notes in mathematics (Springer-Verlag) 1547.
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/1496257
Hidden Bibliographic Details
Other authors / contributors:Werner, D. (Dirk), 1955-
Werner, W. (Wend), 1958-
ISBN:354056814X (Berlin : pbk.: acid-free) : DM82.00
0387566740 (New York : pbk. : acid-free)
Notes:Includes bibliographical references and index.

MARC

LEADER 00000cam a2200000 a 4500
001 1496257
003 ICU
005 19970810124900.0
008 930907s1993 gw b 001 0 eng
010 |a  93016064 
020 |a 354056814X (Berlin : pbk.: acid-free) :  |c DM82.00 
020 |a 0387566740 (New York : pbk. : acid-free) 
035 |a (ICU)BID17430225 
035 |a (OCoLC)28112369 
040 |c DLC  |d ICU$dOrLoB 
050 0 0 |a QA3  |b .L28 no. 1547  |a QA326 
082 |a 510 s  |a 515/.732  |2 20 
100 1 |a Harmand, P.  |q (Peter),  |d 1953-  |0 http://id.loc.gov/authorities/names/n93038630  |1 http://viaf.org/viaf/113258896 
245 1 0 |a M-ideals in Banach spaces and Banach algebras /  |c P. Harmand, D. Werner, W. Werner. 
260 |a Berlin ;  |a New York :  |b Springer-Verlag,  |c c1993. 
263 |a 9306 
300 |a viii, 287 p. ;  |c 24 cm. 
336 |a text  |b txt  |2 rdacontent  |0 http://id.loc.gov/vocabulary/contentTypes/txt 
337 |a unmediated  |b n  |2 rdamedia  |0 http://id.loc.gov/vocabulary/mediaTypes/n 
338 |a volume  |b nc  |2 rdacarrier  |0 http://id.loc.gov/vocabulary/carriers/nc 
490 1 |a Lecture notes in mathematics ;  |v 1547 
504 |a Includes bibliographical references and index. 
505 2 0 |g 1.  |t Introduction --  |g 2.  |t Unstable polynomials of algebraic surfaces.  |g 2.2.  |t A stratification of parameter spaces for vector bundles on [actual symbol not reproducible].  |g 2.3.  |t The stratification of [actual symbol not reproducible].  |g 2.4.  |t The [actual symbol not reproducible][subscript t] construction.  |g 2.5.  |t Analysis of the strata of [actual symbol not reproducible].  |g 2.6.  |t Proofs of the theorems --  |g 3.  |t Identification of [actual symbol not reproducible].  |g 3.1.  |t The main results.  |g 3.2.  |t The family of K3 surfaces with a section.  |g 3.3.  |t The family of minimal elliptic surfaces with multiple fibers.  |g 3.4.  |t The family of blown up elliptic surfaces.  |g 3.5.  |t Proof of Theorem 3.1.4 --  |g 4.  |t Certain moduli spaces for bundles on elliptic surfaces with p[subscript g] = 1.  |g 4.1.  |t Background material on extensions of rank one sheaves.  |g 4.2.  |t The parameter spaces for properly semi-stable bundles.  |g 4.3.  |t The moduli spaces M[subscript c](S, H) for [actual symbol not reproducible].  |g 4.4.  |t Irreducible components of [actual symbol not reproducible] associated to large divisors.  |g 4.5.  |t Four-dimensional components of M[subscript 2](S, H).  |g 4.6.  |t Multiplicities.  |g 4.7.  |t Definition of [actual symbol not reproducible] --  |g 5.  |t Representatives for classes in the image of the v-map.  |g 5.1.  |t Representatives for the v map.  |g 5.2.  |t Passage from the blow-up to the original surface.  |g 5.3.  |t Enumerative Geometry.  |g 5.4.  |t [epsilon][subscript 2](S, H) --  |g 6.  |t The blow-up formula.  |g 6.1.  |t Outline of the proof of Theorem 6.0.1 for k = 2.  |g 6.2.  |t First results.  |g 6.3.  |t An extension of the family [actual symbol not reproducible].  |g 6.4.  |t Proof of Proposition 6.1.3.  |g 6.5.  |t The contribution of the X[subscript i].  |g 6.6.  |t The multiplicity of the X[subscript i] such that [actual symbol not reproducible] --  |g 7.  |t The proof of Theorem 1.1.1.  |g 7.1.  |t Only the components of M[subscript 3](S, H) associated to large divisors contribute to the first two coefficients of [actual symbol not reproducible].  |g 7.2.  |t The proof of the first part of Proposition 7.0.10.  |g 7.3.  |t A further study of the components [actual symbol not reproducible].  |g 7.4.  |t The computation of [actual symbol not reproducible].  |g 7.5.  |t Proof of Formula (79) and of Proposition 7.0.12.  |g 8.  |t Appendix: The non-simply connected case /  |r John W. Morgan, Millie Niss and Kieran O'Grady.  |g 8.1.  |t Proof of Proposition 8.0.20.  |g 8.2.  |t Proof of Proposition 8.0.21.  |g 8.3.  |t Computation of [epsilon][subscript 2](S, H). 
650 0 |a Banach spaces  |0 http://id.loc.gov/authorities/subjects/sh85011441 
650 0 |a Ideals (Algebra)  |0 http://id.loc.gov/authorities/subjects/sh85064134 
650 0 |a Approximation theory  |0 http://id.loc.gov/authorities/subjects/sh85006190 
650 7 |a Approximation theory.  |2 fast  |0 http://id.worldcat.org/fast/fst00811829 
650 7 |a Banach spaces.  |2 fast  |0 http://id.worldcat.org/fast/fst00826389 
650 7 |a Ideals (Algebra)  |2 fast  |0 http://id.worldcat.org/fast/fst00966851 
700 1 0 |a Werner, D.  |q (Dirk),  |d 1955-  |0 http://id.loc.gov/authorities/names/n93038632  |1 http://viaf.org/viaf/27686768 
700 1 0 |a Werner, W.  |q (Wend),  |d 1958-  |0 http://id.loc.gov/authorities/names/n93038634  |1 http://viaf.org/viaf/113258934 
830 0 |a Lecture notes in mathematics (Springer-Verlag)  |v 1547.  |0 http://id.loc.gov/authorities/names/n42015165 
850 |a ICU 
901 |a ToCBNA 
903 |a HeVa 
903 |a Hathi 
929 |a cat 
999 f f |i 91c887e5-f080-5030-8012-c10c408239d2  |s 8c4e4629-ceb3-58c5-b75a-f7a8b914a64b 
928 |t Library of Congress classification  |a QA326.H375 1993  |l ASR  |c ASR-SciASR  |i 2555118 
927 |t Library of Congress classification  |a QA326.H375 1993  |l ASR  |c ASR-SciASR  |e CRERAR  |b 39947434  |i 2887412