M-ideals in Banach spaces and Banach algebras /
Saved in:
Author / Creator: | Harmand, P. (Peter), 1953- |
---|---|
Imprint: | Berlin ; New York : Springer-Verlag, c1993. |
Description: | viii, 287 p. ; 24 cm. |
Language: | English |
Series: | Lecture notes in mathematics ; 1547 Lecture notes in mathematics (Springer-Verlag) 1547. |
Subject: | |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/1496257 |
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | 1496257 | ||
003 | ICU | ||
005 | 19970810124900.0 | ||
008 | 930907s1993 gw b 001 0 eng | ||
010 | |a 93016064 | ||
020 | |a 354056814X (Berlin : pbk.: acid-free) : |c DM82.00 | ||
020 | |a 0387566740 (New York : pbk. : acid-free) | ||
035 | |a (ICU)BID17430225 | ||
035 | |a (OCoLC)28112369 | ||
040 | |c DLC |d ICU$dOrLoB | ||
050 | 0 | 0 | |a QA3 |b .L28 no. 1547 |a QA326 |
082 | |a 510 s |a 515/.732 |2 20 | ||
100 | 1 | |a Harmand, P. |q (Peter), |d 1953- |0 http://id.loc.gov/authorities/names/n93038630 |1 http://viaf.org/viaf/113258896 | |
245 | 1 | 0 | |a M-ideals in Banach spaces and Banach algebras / |c P. Harmand, D. Werner, W. Werner. |
260 | |a Berlin ; |a New York : |b Springer-Verlag, |c c1993. | ||
263 | |a 9306 | ||
300 | |a viii, 287 p. ; |c 24 cm. | ||
336 | |a text |b txt |2 rdacontent |0 http://id.loc.gov/vocabulary/contentTypes/txt | ||
337 | |a unmediated |b n |2 rdamedia |0 http://id.loc.gov/vocabulary/mediaTypes/n | ||
338 | |a volume |b nc |2 rdacarrier |0 http://id.loc.gov/vocabulary/carriers/nc | ||
490 | 1 | |a Lecture notes in mathematics ; |v 1547 | |
504 | |a Includes bibliographical references and index. | ||
505 | 2 | 0 | |g 1. |t Introduction -- |g 2. |t Unstable polynomials of algebraic surfaces. |g 2.2. |t A stratification of parameter spaces for vector bundles on [actual symbol not reproducible]. |g 2.3. |t The stratification of [actual symbol not reproducible]. |g 2.4. |t The [actual symbol not reproducible][subscript t] construction. |g 2.5. |t Analysis of the strata of [actual symbol not reproducible]. |g 2.6. |t Proofs of the theorems -- |g 3. |t Identification of [actual symbol not reproducible]. |g 3.1. |t The main results. |g 3.2. |t The family of K3 surfaces with a section. |g 3.3. |t The family of minimal elliptic surfaces with multiple fibers. |g 3.4. |t The family of blown up elliptic surfaces. |g 3.5. |t Proof of Theorem 3.1.4 -- |g 4. |t Certain moduli spaces for bundles on elliptic surfaces with p[subscript g] = 1. |g 4.1. |t Background material on extensions of rank one sheaves. |g 4.2. |t The parameter spaces for properly semi-stable bundles. |g 4.3. |t The moduli spaces M[subscript c](S, H) for [actual symbol not reproducible]. |g 4.4. |t Irreducible components of [actual symbol not reproducible] associated to large divisors. |g 4.5. |t Four-dimensional components of M[subscript 2](S, H). |g 4.6. |t Multiplicities. |g 4.7. |t Definition of [actual symbol not reproducible] -- |g 5. |t Representatives for classes in the image of the v-map. |g 5.1. |t Representatives for the v map. |g 5.2. |t Passage from the blow-up to the original surface. |g 5.3. |t Enumerative Geometry. |g 5.4. |t [epsilon][subscript 2](S, H) -- |g 6. |t The blow-up formula. |g 6.1. |t Outline of the proof of Theorem 6.0.1 for k = 2. |g 6.2. |t First results. |g 6.3. |t An extension of the family [actual symbol not reproducible]. |g 6.4. |t Proof of Proposition 6.1.3. |g 6.5. |t The contribution of the X[subscript i]. |g 6.6. |t The multiplicity of the X[subscript i] such that [actual symbol not reproducible] -- |g 7. |t The proof of Theorem 1.1.1. |g 7.1. |t Only the components of M[subscript 3](S, H) associated to large divisors contribute to the first two coefficients of [actual symbol not reproducible]. |g 7.2. |t The proof of the first part of Proposition 7.0.10. |g 7.3. |t A further study of the components [actual symbol not reproducible]. |g 7.4. |t The computation of [actual symbol not reproducible]. |g 7.5. |t Proof of Formula (79) and of Proposition 7.0.12. |g 8. |t Appendix: The non-simply connected case / |r John W. Morgan, Millie Niss and Kieran O'Grady. |g 8.1. |t Proof of Proposition 8.0.20. |g 8.2. |t Proof of Proposition 8.0.21. |g 8.3. |t Computation of [epsilon][subscript 2](S, H). |
650 | 0 | |a Banach spaces |0 http://id.loc.gov/authorities/subjects/sh85011441 | |
650 | 0 | |a Ideals (Algebra) |0 http://id.loc.gov/authorities/subjects/sh85064134 | |
650 | 0 | |a Approximation theory |0 http://id.loc.gov/authorities/subjects/sh85006190 | |
650 | 7 | |a Approximation theory. |2 fast |0 http://id.worldcat.org/fast/fst00811829 | |
650 | 7 | |a Banach spaces. |2 fast |0 http://id.worldcat.org/fast/fst00826389 | |
650 | 7 | |a Ideals (Algebra) |2 fast |0 http://id.worldcat.org/fast/fst00966851 | |
700 | 1 | 0 | |a Werner, D. |q (Dirk), |d 1955- |0 http://id.loc.gov/authorities/names/n93038632 |1 http://viaf.org/viaf/27686768 |
700 | 1 | 0 | |a Werner, W. |q (Wend), |d 1958- |0 http://id.loc.gov/authorities/names/n93038634 |1 http://viaf.org/viaf/113258934 |
830 | 0 | |a Lecture notes in mathematics (Springer-Verlag) |v 1547. |0 http://id.loc.gov/authorities/names/n42015165 | |
850 | |a ICU | ||
901 | |a ToCBNA | ||
903 | |a HeVa | ||
903 | |a Hathi | ||
929 | |a cat | ||
999 | f | f | |i 91c887e5-f080-5030-8012-c10c408239d2 |s 8c4e4629-ceb3-58c5-b75a-f7a8b914a64b |
928 | |t Library of Congress classification |a QA326.H375 1993 |l ASR |c ASR-SciASR |i 2555118 | ||
927 | |t Library of Congress classification |a QA326.H375 1993 |l ASR |c ASR-SciASR |e CRERAR |b 39947434 |i 2887412 |