|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
1515695 |
003 |
ICU |
005 |
19970810233500.0 |
008 |
931119s1994 enka b 001 0 eng |
010 |
|
|
|a 93003418
|
020 |
|
|
|a 0521443504
|
020 |
|
|
|a 0521448107 (pbk.)
|
035 |
|
|
|a (ICU)BID17628309
|
035 |
|
|
|a (OCoLC)27769930
|
040 |
|
|
|c DLC
|d ICU$dOrLoB
|
050 |
0 |
0 |
|a QC718
|b .S76 1993
|
082 |
|
|
|a 530.4/4
|2 20
|
100 |
1 |
|
|a Sturrock, Peter A.
|q (Peter Andrew)
|0 http://id.loc.gov/authorities/names/n83827192
|1 http://viaf.org/viaf/27128491
|
245 |
1 |
0 |
|a Plasma physics :
|b an introduction to the theory of astrophysical, geophysical, and laboratory plasmas /
|c Peter A. Sturrock.
|
260 |
|
|
|a Cambridge [England] ;
|a New York, NY, USA :
|b Cambridge University Press,
|c 1994.
|
263 |
|
|
|a 9311
|
300 |
|
|
|a xii, 335 p. :
|b ill. ;
|c 25 cm.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|0 http://id.loc.gov/vocabulary/contentTypes/txt
|
337 |
|
|
|a unmediated
|b n
|2 rdamedia
|0 http://id.loc.gov/vocabulary/mediaTypes/n
|
338 |
|
|
|a volume
|b nc
|2 rdacarrier
|0 http://id.loc.gov/vocabulary/carriers/nc
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
0 |
0 |
|g 1.
|t Introduction --
|g 2.
|t Basic concepts.
|g 2.1.
|t Collective effects.
|g 2.2.
|t Charge neutrality and the Debye length.
|g 2.3.
|t Debye shielding.
|g 2.4.
|t The plasma parameter.
|g 2.5.
|t Plasma oscillations --
|g 3.
|t Orbit theory - uniform fields.
|g 3.1.
|t Particle motion in a static, uniform magnetic field.
|g 3.2.
|t Particle motion in electric and magnetic fields.
|g 3.3.
|t Particle motion in magnetic and gravitational fields.
|g 3.4.
|t Particle motion in a time-varying uniform magnetic field --
|g 4.
|t Adiabatic invariants.
|g 4.1.
|t General adiabatic invariants.
|g 4.2.
|t The first adiabatic invariant: magnetic moment.
|g 4.3.
|t Relativistic form of the first adiabatic invariant.
|g 4.4.
|t The second adiabatic invariant: the bounce invariant.
|g 4.5.
|t Magnetic traps.
|g 4.6.
|t The third adiabatic invariant --
|g 5.
|t Orbit theory.
|g 5.1.
|t Particle motion in a static inhomogeneous magnetic field.
|g 5.2.
|t Discussion of orbit theory for a static inhomogeneous magnetic field.
|g 5.3.
|t Drifts in the Earth's magnetosphere.
|g 5.4.
|t Motion in a time-varying electric field.
|g 5.5.
|t Particle motion in a rapidly time-varying electromagnetic field --
|g 6.
|t Electromagnetic waves in a cold electron plasma.
|g 6.1.
|t The wave equation.
|g 6.2.
|t Waves in a cold electron plasma without a magnetic field.
|g 6.3.
|t Effect of collisions.
|g 6.4.
|t Electromagnetic waves in a cold magnetized electron plasma.
|g 6.5.
|t Wave propagation normal to the magnetic field.
|g 6.6.
|t Propagation parallel to the magnetic field.
|g 6.7.
|t Faraday rotation.
|g 6.8.
|t Dispersion of radio waves.
|g 6.9.
|t Whistlers --
|g 7.
|t Electromagnetic waves in an electron-ion plasma.
|g 7.1.
|t The dispersion relation.
|g 7.2.
|t Wave propagation in an electron plasma --
|g 8.
|t Two-stream instability.
|g 8.1.
|t Particle streams of zero temperature.
|g 8.2.
|t Two-stream instability.
|g 8.3.
|t Two identical but opposing streams.
|g 8.4.
|t Stream moving through a stationary plasma --
|g 9.
|t Electrostatic oscillations in a plasma of nonzero temperature.
|g 9.1.
|t Distribution functions.
|g 9.2.
|t Linear perturbation analysis of the Vlasov equation.
|g 9.3.
|t Dispersion relation for a warm plasma.
|g 9.4.
|t The Landau initial-value problem.
|g 9.5.
|t Gardner's theorem.
|g 9.6.
|t Weakly damped waves - Landau damping.
|g 9.7.
|t The Penrose criterion for stability --
|g 10.
|t Collision theory.
|g 10.1.
|t Lagrange expansion.
|g 10.2.
|t The Fokker-Planck equation.
|g 10.3.
|t Coulomb collisions.
|g 10.4.
|t The Fokker-Planck equation for Coulomb collisions.
|g 10.5.
|t Relaxation times --
|g 11.
|t MHD equations.
|g 11.1.
|t The moment equations.
|g 11.2.
|t Fluid description of an electron-proton plasma.
|g 11.3.
|t The collision term.
|g 11.4.
|t Moment equations for each species.
|g 11.5.
|t Fluid description.
|g 11.6.
|t Ohm's law.
|g 11.7.
|t The ideal MHD equations.
|g 11.8.
|t The conductivity tensor --
|g 12.
|t Magnetohydrodynamics.
|g 12.1.
|t Evolution of the magnetic field.
|g 12.2.
|t Frozen magnetic field lines.
|g 12.3.
|t Diffusion of magnetic field lines.
|g 12.4.
|t The virial theorem.
|g 12.5.
|t Extension of the virial theorem.
|g 12.6.
|t Stability analysis using the virial theorem --
|g 13.
|t Force-free magnetic-field configurations --
|g 13.1.
|t Introduction.
|g 13.2.
|t Linear force-free fields.
|g 13.3.
|t Examples of linear force-free fields.
|g 13.4.
|t The generating-function method.
|g 13.5.
|t Calculation of magnetic-field configurations.
|g 13.6.
|t Linear force-free fields of cylindrical symmetry.
|g 13.7.
|t Uniformly twisted cylindrical force-free field.
|g 13.8.
|t Magnetic helicity.
|g 13.9.
|t Woltjer's theorem.
|g 13.10.
|t Useful relations for semi-infinite force-free magnetic-field configurations --
|g 14.
|t Waves in MHD systems.
|g 14.1.
|t MHD waves in a uniform plasma.
|g 14.2.
|t Waves in a barometric medium --
|g 15.
|t Magnetohydrodynamic stability.
|g 15.1.
|t The linear pinch.
|g 15.2.
|t Stability analysis.
|g 15.3.
|t Boundary conditions.
|g 15.4.
|t Internally homogeneous linear pinch.
|g 15.5.
|t Application of the boundary conditions --
|g 16.
|t Variation principle for MHD systems.
|g 16.1.
|t Variation principle for a spatially distributed system.
|g 16.2.
|t Convection of magnetic field.
|g 16.3.
|t Variation principle of MHD motion.
|g 16.4.
|t Small-amplitude disturbances --
|g 17.
|t Resistive instabilities --
|g 17.1.
|t Introductory remarks.
|g 17.2.
|t Current sheet configuration.
|g 17.3.
|t Evolution of the magnetic field.
|g 17.4.
|t Equation of motion.
|g 17.5.
|t The tearing mode.
|g 17.6.
|t Solution of the differential equations --
|g 18.
|t Stochastic processes.
|g 18.1.
|t Stochastic diffusion.
|g 18.2.
|t One-dimensional stochastic acceleration.
|g 18.3.
|t Stochastic diffusion, Landau damping and quasilinear theory --
|g 19.
|t Interaction of particles and waves.
|g 19.1.
|t Quantum-mechanical description.
|g 19.2.
|t Transition to the classical limit.
|g 19.3.
|t The three-state model: emission and absorption.
|g 19.4.
|t Diffusion equation for the particle distribution function.
|t Appendix A Units and constants --
|t Appendix B Group velocity --
|t Appendix C Amplifying and evanescent waves, convective and absolute instability.
|
650 |
|
0 |
|a Plasma (Ionized gases)
|0 http://id.loc.gov/authorities/subjects/sh85103050
|
650 |
|
0 |
|a Magnetohydrodynamics
|0 http://id.loc.gov/authorities/subjects/sh85079784
|
650 |
|
7 |
|a Magnetohydrodynamics.
|2 fast
|0 http://id.worldcat.org/fast/fst01005872
|
650 |
|
7 |
|a Plasma (Ionized gases)
|2 fast
|0 http://id.worldcat.org/fast/fst01066262
|
850 |
|
|
|a ICU
|
901 |
|
|
|a ToCBNA
|
903 |
|
|
|a HeVa
|
929 |
|
|
|a cat
|
999 |
f |
f |
|i ffa2484c-d511-50cf-8055-da79e8fff7d7
|s c8e06871-af12-595f-905f-eb14e117db1d
|
928 |
|
|
|t Library of Congress classification
|a QC718.S760 1994
|l JCL
|c JCL-Sci
|i 2818418
|
927 |
|
|
|t Library of Congress classification
|a QC718.S760 1994
|l JCL
|c JCL-Sci
|e CRERAR
|b 40615621
|i 2915607
|