Biomechanics of the musculo-skeletal system /
Saved in:
Imprint: | Chichester ; New York : J. Wiley, c1994. |
---|---|
Description: | xv, 578 p. : ill. ; 25 cm. |
Language: | English |
Subject: | |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/1683153 |
Table of Contents:
- Contributors
- Preface
- 1. Introduction
- 1.1. Definition of Biomechanics
- 1.2. Selected Historical Highlights
- 1.2.1. The Scientific Legacy of Antiquity
- 1.2.2. The Middle Ages
- 1.2.3. The Italian Renaissance
- 1.2.4. The Scientific Revolution
- 1.2.5. The Enlightenment
- 1.2.6. The Gait Century
- 1.2.7. The Twentieth Century
- 1.2.8. Final Comments
- 1.3. Mechanics
- 1.3.1. Definitions and Comments
- 1.3.2. Selected Historical Highlights
- 1.3.3. Newton's Laws of Motion
- 1.3.4. Equations of Motion for a Rigid Body
- 1.3.5. General Comments
- 1.4. References
- 2. Biological Materials
- 2.1. Definitions and Comments
- 2.1.1. Anatomy
- 2.1.2. Mechanics
- 2.2. Selected Historical Highlights
- 2.2.1. Bone
- 2.2.2. Articular Cartilage
- 2.2.3. Ligament
- 2.2.4. Tendon
- 2.2.5. Muscle
- 2.3. Bone
- 2.3.1. Morphology and Histology
- 2.3.2. Physical Properties
- 2.3.3. Bone Mechanics as Related to Function
- 2.3.4. Failure of Bone
- 2.4. Articular Cartilage
- 2.4.1. Introduction
- 2.4.2. Structure
- 2.4.3. Composition
- 2.4.4. Mechanical Properties
- 2.4.5. Biomechanics
- 2.4.6. Osteoarthritis
- 2.4.7. Theoretical and Numerical Models
- 2.5. Ligament
- 2.5.1. Morphology and Histology
- 2.5.2. Function
- 2.5.3. Physical Properties and Mechanics
- 2.5.4. Biology and Function
- 2.5.5. Failure and Healing
- 2.6. Tendon/Aponeurosis
- 2.6.1. Morphology and Histology
- 2.6.2. Physical Properties
- 2.6.3. Physiological Properties and Adaptive Function
- 2.6.4. Tendon-Muscle-Aponeurosis Interactions
- 2.7. Muscle
- 2.7.1. Introduction
- 2.7.2. Morphology
- 2.7.3. Muscular Contraction
- 2.7.4. The Cross-Bridge Theory
- 2.7.5. Physical Properties
- 2.7.6. Applications
- 2.8. Adaptation of Biological Materials to Exercise, Disuse, and Aging
- 2.8.1. Introduction
- 2.8.2. Bone
- 2.8.3. Articular Cartilage
- 2.8.4. Ligament
- 2.8.5. Tendon
- 2.8.6. Skeletal Muscle
- 2.9. Joints
- 2.9.1. Classification of Joints
- 2.9.2. Function
- 2.9.3. Degrees of Freedom of Joints
- 2.9.4. The Human Ankle Joint Complex
- 2.9.5. Joint Adaptation
- 2.10. Additional Examples
- 2.11. References
- 3. Measuring Techniques
- 3.1. Definitions and Comments
- 3.2. Selected Historical Highlights
- 3.3. Force
- 3.3.1. Measuring Possibilities
- 3.3.2. Applications
- 3.4. Pressure Distribution
- 3.4.1. Measuring Possibilities
- 3.4.2. Applications
- 3.5. Acceleration
- 3.5.1. Measuring Possibilities
- 3.5.2. Applications
- 3.6. Optical Methods
- 3.6.1. Cameras and Markers
- 3.6.2. Determining Marker Positions
- 3.6.3. Determining Rigid Body Kinematics
- 3.7. Strain Measurement
- 3.7.1. Measuring Possibilities
- 3.7.2. Applications
- 3.8. EMG
- 3.8.1. Introduction
- 3.8.2. EMG Signal
- 3.8.3. EMG Signal Recording
- 3.8.4. EMG Signal Processing
- 3.8.5. EMG-Force Relation
- 3.8.6. Examples of Wavelet EMG Analysis
- 3.9. Inertial Properties of the Human or Animal Body
- 3.9.1. Inertial Properties
- 3.10. Additional Examples
- 3.11. References
- 4. Modelling
- 4.1. Definitions and Comments
- 4.2. Selected Historical Highlights
- 4.3. A Nearly Possible Story
- 4.4. General Comments About Modelling
- 4.4.1. General Considerations
- 4.4.2. Information Used to Construct a Model
- 4.4.3. Simplification
- 4.4.4. The Purpose of a Model
- 4.4.5. The Validation of a Model
- 4.4.6. Types of Models
- 4.4.7. Descriptive, Experimental, and/or Analytical Research and Modelling
- 4.4.8. General Procedures in Modelling
- 4.5. Force System Analysis
- 4.5.1. Introduction
- 4.5.2. The Mechanical System of Interest
- 4.5.3. Assumptions
- 4.5.4. Free Body Diagram
- 4.5.5. Equations of Motion
- 4.5.6. Mathematical Solution
- 4.6. Mathematically Determinate Systems
- 4.6.1. Introduction
- 4.6.2. Mechanical Models Using Particles
- 4.6.3. Mechanical Models Using Rigid Bodies
- 4.6.4. Comments for Section 4.6
- 4.7. Mathematically Indeterminate Systems
- 4.7.1. Introduction
- 4.7.2. Basic Concepts
- 4.7.3. Joint Equipollence Equations
- 4.7.4. Solving Mathematically Underdetermined Systems Using Optimization Theory
- 4.8. Simulation
- 4.8.1. Introduction
- 4.8.2. Differential Equations
- 4.8.3. Numerical Solution Methods
- 4.8.4. Equations of Motion for Mechanical Systems
- 4.8.5. Muscle Models
- 4.8.6. Simulation Using Musculo-Skeletal Models
- 4.8.7. Modelling of External Forces
- 4.8.8. Optimization Studies
- 4.8.9. Simulation as a Scientific Tool
- 4.8.10. Applications
- 4.9. Additional Examples
- 4.10. References
- Index