Bayesian data analysis /
Saved in:
Imprint: | London ; New York : Chapman & Hall, 1995. |
---|---|
Description: | xix, 526 p. : ill. ; 24 cm. |
Language: | English |
Series: | Chapman & Hall texts in statistical science series Texts in statistical science. |
Subject: | |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/2327440 |
Table of Contents:
- List of models
- List of examples
- Preface
- Part I. Fundamentals of Bayesian Inference
- 1. Background
- 1.1. Overview
- 1.2. General notation for statistical inference
- 1.3. Bayesian inference
- 1.4. Example: inference about a genetic probability
- 1.5. Probability as a measure of uncertainty
- 1.6. Example of probability assignment: football point spreads
- 1.7. Example of probability assignment: estimating the accuracy of record linkage
- 1.8. Some useful results from probability theory
- 1.9. Summarizing inferences by simulation
- 1.10. Computation and software
- 1.11. Bibliographic note
- 1.12. Exercises
- 2. Single-parameter models
- 2.1. Estimating a probability from binomial data
- 2.2. Posterior distribution as compromise between data and prior information
- 2.3. Summarizing posterior inference
- 2.4. Informative prior distributions
- 2.5. Example: estimating the probability of a female birth given placenta previa
- 2.6. Estimating the mean of a normal distribution with known variance
- 2.7. Other standard single-parameter models
- 2.8. Example: informative prior distribution and multilevel structure for estimating cancer rates
- 2.9. Noninformative prior distributions
- 2.10. Bibliographic note
- 2.11. Exercises
- 3. Introduction to multiparameter models
- 3.1. Averaging over 'nuisance parameters'
- 3.2. Normal data with a noninformative prior distribution
- 3.3. Normal data with a conjugate prior distribution
- 3.4. Normal data with a semi-conjugate prior distribution
- 3.5. The multinomial model
- 3.6. The multivariate normal model
- 3.7. Example: analysis of a bioassay experiment
- 3.8. Summary of elementary modeling and computation
- 3.9. Bibliographic note
- 3.10. Exercises
- 4. Large-sample inference and frequency properties of Bayesian inference
- 4.1. Normal approximations to the posterior distribution
- 4.2. Large-sample theory
- 4.3. Counterexamples to the theorems
- 4.4. Frequency evaluations of Bayesian inferences
- 4.5. Bibliographic note
- 4.6. Exercises
- Part II. Fundamentals of Bayesian Data Analysis
- 5. Hierarchical models
- 5.1. Constructing a parameterized prior distribution
- 5.2. Exchangeability and setting up hierarchical models
- 5.3. Computation with hierarchical models
- 5.4. Estimating an exchangeable set of parameters from a normal model
- 5.5. Example: combining information from educational testing experiments in eight schools
- 5.6. Hierarchical modeling applied to a meta-analysis
- 5.7. Bibliographic note
- 5.8. Exercises
- 6. Model checking and improvement
- 6.1. The place of model checking in applied Bayesian statistics
- 6.2. Do the inferences from the model make sense?
- 6.3. Is the model consistent with data? Posterior predictive checking
- 6.4. Graphical posterior predictive checks
- 6.5. Numerical posterior predictive checks
- 6.6. Model expansion
- 6.7. Model comparison
- 6.8. Model checking for the educational testing example
- 6.9. Bibliographic note
- 6.10. Exercises
- 7. Modeling accounting for data collection
- 7.1. Introduction
- 7.2. Formal models for data collection
- 7.3. Ignorability
- 7.4. Sample surveys
- 7.5. Designed experiments
- 7.6. Sensitivity and the role of randomization
- 7.7. Observational studies
- 7.8. Censoring and truncation
- 7.9. Discussion
- 7.10. Bibliographic note
- 7.11. Exercises
- 8. Connections and challenges
- 8.1. Bayesian interpretations of other statistical methods
- 8.2. Challenges in Bayesian data analysis
- 8.3. Bibliographic note
- 8.4. Exercises
- 9. General advice
- 9.1. Setting up probability models
- 9.2. Posterior inference
- 9.3. Model evaluation
- 9.4. Summary
- 9.5. Bibliographic note
- Part III. Advanced Computation
- 10. Overview of computation
- 10.1. Crude estimation by ignoring some information
- 10.2. Use of posterior simulations in Bayesian data analysis
- 10.3. Practical issues
- 10.4. Exercises
- 11. Posterior simulation
- 11.1. Direct simulation
- 11.2. Markov chain simulation
- 11.3. The Gibbs sampler
- 11.4. The Metropolis and Metropolis-Hastings algorithms
- 11.5. Building Markov chain algorithms using the Gibbs sampler and Metropolis algorithm
- 11.6. Inference and assessing convergence
- 11.7. Example: the hierarchical normal model
- 11.8. Efficient Gibbs samplers
- 11.9. Efficient Metropolis jumping rules
- 11.10. Recommended strategy for posterior simulation
- 11.11. Bibliographic note
- 11.12. Exercises
- 12. Approximations based on posterior modes
- 12.1. Finding posterior modes
- 12.2. The normal and related mixture approximations
- 12.3. Finding marginal posterior modes using EM and related algorithms
- 12.4. Approximating conditional and marginal posterior densities
- 12.5. Example: the hierarchical normal model (continued)
- 12.6. Bibliographic note
- 12.7. Exercises
- 13. Special topics in computation
- 13.1. Advanced techniques for Markov chain simulation
- 13.2. Numerical integration
- 13.3. Importance sampling
- 13.4. Computing normalizing factors
- 13.5. Bibliographic note
- 13.6. Exercises
- Part IV. Regression Models
- 14. Introduction to regression models
- 14.1. Introduction and notation
- 14.2. Bayesian analysis of the classical regression model
- 14.3. Example: estimating the advantage of incumbency in U.S. Congressional elections
- 14.4. Goals of regression analysis
- 14.5. Assembling the matrix of explanatory variables
- 14.6. Unequal variances and correlations
- 14.7. Models for unequal variances
- 14.8. Including prior information
- 14.9. Bibliographic note
- 14.10. Exercises
- 15. Hierarchical linear models
- 15.1. Regression coefficients exchangeable in batches
- 15.2. Example: forecasting U.S. Presidential elections
- 15.3. General notation for hierarchical linear models
- 15.4. Computation
- 15.5. Hierarchical modeling as an alternative to selecting predictors
- 15.6. Analysis of variance
- 15.7. Bibliographic note
- 15.8. Exercises
- 16. Generalized linear models
- 16.1. Introduction
- 16.2. Standard generalized linear model likelihoods
- 16.3. Setting up and interpreting generalized linear models
- 16.4. Computation
- 16.5. Example: hierarchical Poisson regression for police stops
- 16.6. Example: hierarchical logistic regression for political opinions
- 16.7. Models for multinomial responses
- 16.8. Loglinear models for multivariate discrete data
- 16.9. Bibliographic note
- 16.10. Exercises
- 17. Models for robust inference
- 17.1. Introduction
- 17.2. Overdispersed versions of standard probability models
- 17.3. Posterior inference and computation
- 17.4. Robust inference and sensitivity analysis for the educational testing example
- 17.5. Robust regression using Student-t errors
- 17.6. Bibliographic note
- 17.7. Exercises
- 18. Mixture models
- 18.1. Introduction
- 18.2. Setting up mixture models
- 18.3. Computation
- 18.4. Example: reaction times and schizophrenia
- 18.5. Bibliographic note
- 19. Multivariate models
- 19.1. Linear regression with multiple outcomes
- 19.2. Prior distributions for covariance matrices
- 19.3. Hierarchical multivariate models
- 19.4. Multivariate models for nonnormal data
- 19.5. Time series and spatial models
- 19.6. Bibliographic note
- 19.7. Exercises
- 20. Nonlinear models
- 20.1. Introduction
- 20.2. Example: serial dilution assay
- 20.3. Example: population toxicokinetics
- 20.4. Bibliographic note
- 20.5. Exercises
- 21. Models for missing data
- 21.1. Notation
- 21.2. Multiple imputation
- 21.3. Missing data in the multivariate normal and t models
- 21.4. Example: multiple imputation for a series of polls
- 21.5. Missing values with counted data
- 21.6. Example: an opinion poll in Slovenia
- 21.7. Bibliographic note
- 21.8. Exercises
- 22. Decision analysis
- 22.1. Bayesian decision theory in different contexts
- 22.2. Using regression predictions: incentives for telephone surveys
- 22.3. Multistage decision making: medical screening
- 22.4. Decision analysis using a hierarchical model: home radon measurement and remediation
- 22.5. Personal vs. institutional decision analysis
- 22.6. Bibliographic note
- 22.7. Exercises
- Appendixes
- A. Standard probability distributions
- A.1. Introduction
- A.2. Continuous distributions
- A.3. Discrete distributions
- A.4. Bibliographic note
- B. Outline of proofs of asymptotic theorems
- B.1. Bibliographic note
- C. Example of computation in R and Bugs
- C.1. Getting started with R and Bugs
- C.2. Fitting a hierarchical model in Bugs
- C.3. Options in the Bugs implementation
- C.4. Fitting a hierarchical model in R
- C.5. Further comments on computation
- C.6. Bibliographic note
- References
- Author index
- Subject index