Simulation and modeling of turbulent flows /

Saved in:
Bibliographic Details
Imprint:New York : Oxford University Press, 1996.
Description:x, 314 p. : ill. ; 25 cm.
Language:English
Series:ICASE/LaRC series in computational science and engineering
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/2612288
Hidden Bibliographic Details
Other authors / contributors:Gatski, T. B.
Hussaini, M. Yousuff.
Lumley, John L. (John Leask), 1930-
ISBN:0195106431 (alk. paper)
Notes:"Based on the lecture notes of ICASE/LaRC Short Course on Turbulent Modeling and Prediction, held Mar. 14-18, 1994"--Pref.
Includes bibliographical references and index.
Table of Contents:
  • Part I. Fundamental Aspects of Incompressible and Compressible Turbulent Flows
  • 1. Introduction
  • 1.1. The Energy Cascade in the Spectrum in Equilibrium Flows
  • 1.2. Kolmogorov Scales
  • 1.3. Equilibrium Estimates for Dissipation
  • 1.4. The Dynamics of Turbulence
  • 2. Equilibrium and Non-Equilibrium Flows
  • 2.1. The Spectral Cascade in Non-Equilibrium Flows
  • 2.2. Delay in Crossing the Spectrum
  • 2.3. Negative Production
  • 2.4. Mixing of Fluid with Different Histories
  • 2.5. Deformation Work in Equilibrium and Non-Equilibrium Situations
  • 2.6. Alignment of Vectors
  • 2.7. Dilatational Dissipation and Irrotational Dissipation
  • 2.8. Eddy Shocklets
  • 3. Proper Orthogonal Decomposition and Wavelet Representations
  • 3.1. Coherent Structures
  • 3.2. The Role of Coherent Structures in turbulence Dynamics
  • 3.3. The POD as a Representation of Coherent Structures
  • 3.4. Low-Dimensional Models Constructed Using the POD
  • 3.5. Comparison with the Wall Region
  • 3.6. Generation of Eigenfunction from Stability Arguments
  • 3.7. Wavelet Representation
  • 3.8. Dynamics with the Wavelet Representation in a Simple Equation
  • 4. References
  • Part II. Direct Numerical Simulation of Turbulent Flows
  • 1.
  • 2. Problem of Numerical Simulation
  • 3. Simulation of Homogenous Incompressible Turbulence
  • 4. Wall-Bounded and Inhomogenous Flows
  • 5. Fast, Viscous Vortex Methods
  • 6. Simulation of Compressible Turbulence
  • 7. References
  • Part III. Large Eddy Simulation
  • 1. Introduction
  • 2. Turbulence and its Prediction
  • 2.1. The Nature of Turbulence
  • 2.2. RANS Model
  • 2.3. Direct Numerical Simulation (DNS)
  • 3. Filtering
  • 4. Subgrid Scale Model
  • 4.1. Physics of the Subgrid Scale Term
  • 4.2. Smagorinsky Model
  • 4.3. A Priori Testing
  • 4.4. Scale Similarity Model
  • 4.5. Dynamic Procedure
  • 4.6. Spectral Models
  • 4.7. Effects of Other Strains
  • 4.8. Other Models
  • 5. Wall Models
  • 6. Numerical Methods
  • 7. Accomplishments and Prospects
  • 8. Coherent Structure Capturing
  • 8.1. The Concept
  • 8.2. Modeling Issues
  • 9. Conclusions and Recommendations
  • 10. References
  • Part IV. Introduction to Renormalization Group Modeling of Turbulence
  • 1. Introduction
  • 2. Perturbation Theory for the Navier-Stokes Equations
  • 3. Renormalization Group Method for Resummation of Divergent Series
  • 4. Transport Modeling
  • 5. References
  • Part V. Modeling of Turbulent Transport Equations
  • 1. Introduction
  • 2. Incompressible Turbulent Flows
  • 2.1. Reynolds Averages
  • 2.2. Reynolds-Averaged Equations
  • 2.3. The Closure Problem
  • 2.4. Older Zero- and One-Equation Models
  • 2.5. Transport Equations of Turbulence
  • 2.6. Two-Equation Models
  • 2.7. Full Second-Order Closures
  • 3. Compressible Turbulence
  • 3.1. Compressible Reynolds Averages
  • 3.2. Compressible Reynolds-Averaged Equations
  • 3.3. Compressible Reynolds Stress Transport Equation
  • 3.4. Compressible Two-Equation Models
  • 3.5. Illustrative Examples
  • 4. Concluding Remarks
  • 5. References
  • Part VI. An Introduction to Single-Point Closure Methodology
  • 1. Introduction
  • 1.1. The Reynolds Equations