Ergodicity for infinite dimensional systems /

Saved in:
Bibliographic Details
Author / Creator:Da Prato, Giuseppe.
Imprint:Cambridge ; New York : Cambridge University Press, 1996.
Description:xi, 339 p. ; 23 cm.
Language:English
Series:London Mathematical Society lecture note series. 229
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/2723206
Hidden Bibliographic Details
Other authors / contributors:Zabczyk, Jerzy.
ISBN:0521579007 (pbk.)
Notes:Includes bibliographical references (p. 321-337) and index.
Table of Contents:
  • Part I. Markovian Dynamical Systems
  • 1. General dynamical systems
  • 2. Canonical Markovian systems
  • 3. Ergodic and mixing measures
  • 4. Regular Markovian systems
  • Part II. Invariant Measures For Stochastics For Evolution Equations
  • 5. Stochastic differential equations
  • 6. Existence of invariant measures
  • 7. Uniqueness of invariant measures
  • 8. Densities of invariant measures
  • Part III. Invariant Measures For Specific Models
  • 9. Ornstein-Uhlenbeck processes
  • 10. Stochastic delay systems
  • 11. Reaction-diffusion equations
  • 12. Spin systems
  • 13. Systems perturbed through the boundary
  • 14. Burgers equation
  • 15. Navier-Stokes equations
  • Appendices