Automorphic forms on SL₂(R) /

Saved in:
Bibliographic Details
Author / Creator:Borel, Armand.
Imprint:Cambridge, U.K. ; New York, NY, USA : Cambridge University Press, 1997.
Description:x, 192 p. ; 24 cm.
Language:English
Series:Cambridge tracts in mathematics. 130
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/2761962
Hidden Bibliographic Details
ISBN:0521580498 (hardbound)
Notes:Includes bibliographical references (p. 185-187) and indexes.
Table of Contents:
  • Part I. Basic Material On SL2(R), Discrete Subgroups and the Upper-Half Plane
  • 1. Prerequisites and notation
  • 2. Review of SL2(R), differential operators, convolution
  • 3. Action of G on X, discrete subgroups of G, fundamental domains
  • 4. The unit disc model
  • Part II. Automorphic Forms and Cusp Forms
  • 5. Growth conditions, automorphic forms
  • 6. Poincare series
  • 7. Constant term:the fundamental estimate
  • 8. Finite dimensionality of the space of automorphic forms of a given type
  • 9. Convolution operators on cuspidal functions
  • Part III. Eisenstein Series
  • 10. Definition and convergence of Eisenstein series
  • 11. Analytic continuation of the Eisenstein series
  • 12. Eisenstein series and automorphic forms orthogonal to cusp forms
  • Part IV. Spectral Decomposition and Representations
  • 13. Spectral decomposition of L2(G G)m with respect to C
  • 14. Generalities on representations of G
  • 15. Representations of SL2(R)
  • 16. Spectral decomposition of L2(G SL2(R)):the discrete spectrum
  • 17. Spectral decomposition of L2(G SL2(R)): the continuous spectrum
  • 18. Concluding remarks