Airplane stability and control : a history of the technologies that made avaition possible /

Saved in:
Bibliographic Details
Author / Creator:Abzug, Malcolm J.
Imprint:Cambridge ; New York : Cambridge University Press, 1997.
Description:xvii, 373 p. : ill. ; 27 cm.
Language:English
Series:Cambridge aerospace series 6
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/2791561
Hidden Bibliographic Details
Other authors / contributors:Larrabee, E. Eugene.
ISBN:0521552362 (hardback)
Notes:Includes bibliographical references (p. 341-359) and index.
Table of Contents:
  • Preface
  • 1. Early Developments in Stability and Control
  • 1.1. Inherent Stability and the Early Machines
  • 1.2. The Problem of Control
  • 1.3. Catching Up to the Wright Brothers
  • 1.4. The Invention of Flap-Type Control Surfaces and Tabs
  • 1.5. Handles, Wheels, and Pedals
  • 1.6. Wright Controls
  • 1.7. Bleriot and Deperdussin Controls
  • 1.8. Stability and Control of World War I Pursuit Airplanes
  • 1.9. Contrasting Design Philosophies
  • 1.10. Frederick Lanchester
  • 1.11. G. H. Bryan and the Equations of Motion
  • 1.12. Metacenter, Center of Pressure, Aerodynamic Center, and Neutral Point
  • 2. Teachers and Texts
  • 2.1. Stability and Control Educators
  • 2.2. Modern Stability and Control Teaching Methods
  • 2.3. Stability and Control Research Institutions
  • 2.4. Stability and Control Textbooks and Conferences
  • 3. Flying Qualities Become a Science
  • 3.1. Warner, Norton, and Allen
  • 3.2. The First Flying Qualities Specification
  • 3.3. Hartley Soule and Floyd Thompson at Langley
  • 3.4. Robert Gilruth's Breakthrough
  • 3.5. S. B. Gates in Britain
  • 3.6. The U.S. Military Services Follow NACA's Lead
  • 3.7. Civil Airworthiness Requirements
  • 3.8. World-Wide Flying Qualities Specifications
  • 3.9. Equivalent System Models and Pilot Rating
  • 3.10. The Counterrevolution
  • 3.11. Procurement Problems
  • 3.12. Variable-Stability Airplanes Play a Part
  • 3.13. Variable-Stability Airplanes as Trainers
  • 3.14. The Future of Variable-Stability Airplanes
  • 3.15. The V/STOL Case
  • 3.16. Two Famous Airplanes
  • 3.17. Changing Military Missions and Flying Qualities Requirements
  • 3.18. Long-Lived Stability and Control Myths
  • 4. Power Effects on Stability and Control
  • 4.1. Propeller Effects on Stability and Control
  • 4.2. Direct-Thrust Moments in Pitch
  • 4.3. Direct-Thrust Moments in Yaw
  • 4.4. World War II Twin-Engine Bombers
  • 4.5. Modern Light Twin Airplanes
  • 4.6. Propeller Slipstream Effects
  • 4.7. Direct Propeller Forces in Yaw (or at Angle of Attack)
  • 4.8. Jet and Rocket Effects on Stability and Control
  • 4.8.1. Jet Intake Normal Force
  • 4.8.2. Airstream Deviation Due to Inflow
  • 4.9. Special VTOL Jet Inflow Effects
  • 4.9.1. Jet Damping and Inertial Effects
  • 5. Managing Control Forces
  • 5.1. Desirable Control Force Levels
  • 5.2. Background to Aerodynamically Balanced Control Surfaces
  • 5.3. Horn Balances
  • 5.4. Overhang or Leading-Edge Balances
  • 5.5. Frise Ailerons
  • 5.6. Aileron Differential
  • 5.7. Balancing or Geared Tabs
  • 5.8. Trailing-Edge Angle and Beveled Controls
  • 5.9. Corded Controls
  • 5.10. Spoiler Ailerons
  • 5.10.1. Spoiler Opening Aerodynamics
  • 5.10.2. Spoiler Steady-State Aerodynamics
  • 5.10.3. Spoiler Operating Forces
  • 5.10.4. Spoiler Aileron Applications
  • 5.11. Internally Balanced Controls
  • 5.12. Flying or Servo and Linked Tabs
  • 5.13. Spring Tabs
  • 5.14. Springy Tabs and Downsprings
  • 5.15. All-Movable Controls
  • 5.16. Mechanical Control System Design Details
  • 5.17. Hydraulic Control Boost
  • 5.18. Early Hydraulic Boost Problems
  • 5.19. Irreversible Powered Controls
  • 5.20. Artificial Feel Systems
  • 5.21. Fly-by-Wire
  • 5.22. Remaining Design Problems in Power Control Systems
  • 5.23. Safety Issues in Fly-by-Wire Control Systems
  • 5.24. Managing Redundancy in Fly-by-Wire Control Systems
  • 5.25. Electric and Fly-by-Light Controls
  • 6. Stability and Control at the Design Stage
  • 6.1. Layout Principles
  • 6.1.1. Subsonic Airplane Balance
  • 6.1.2. Tail Location, Size, and Shape
  • 6.2. Estimation from Drawings
  • 6.2.1. Early Methods
  • 6.2.2. Wing and Tail Methods
  • 6.2.3. Bodies
  • 6.2.4. Wing-Body Interference
  • 6.2.5. Downwash and Sidewash
  • 6.2.6. Early Design Methods Matured-DATCOM, RAeS, JSASS Data Sheets
  • 6.2.7. Computational Fluid Dynamics
  • 6.3. Estimation from Wind-Tunnel Data
  • 7. The Jets at an Awkward Age
  • 7.1. Needed Devices Are Not Installed
  • 7.2. F4D, A4D, and A3D Manual Reversions
  • 7.3. Partial Power Control
  • 7.4. Nonelectronic Stability Augmentation
  • 7.5. Grumman XF10F Jaguar
  • 7.6. Successful B-52 Compromises
  • 7.6.1. The B-52 Rudder Has Limited Control Authority
  • 7.6.2. The B-52 Elevator Also Has Limited Control Authority
  • 7.6.3. The B-52 Manually Controlled Ailerons Are Small
  • 8. The Discovery of Inertial Coupling
  • 8.1. W. H. Phillips Finds an Anomaly
  • 8.2. The Phillips Inertial Coupling Technical Note
  • 8.3. The First Flight Occurrences
  • 8.4. The 1956 Wright Field Conference
  • 8.5. Simplifications and Explications
  • 8.6. The F4D Skyray Experience
  • 8.7. Later Developments
  • 8.8. Inertial Coupling and Future General-Aviation Aircraft
  • 9. Spinning and Recovery
  • 9.1. Spinning Before 1916
  • 9.2. Advent of the Free-Spinning Wind Tunnels
  • 9.3. Systematic Configuration Variations
  • 9.4. Design for Spin Recovery
  • 9.5. Changing Spin Recovery Piloting Techniques
  • 9.5.1. Automatic Spin Recovery
  • 9.6. The Role of Rotary Derivatives in Spins
  • 9.7. Rotary Balances and the Steady Spin
  • 9.8. Rotary Balances and the Unsteady Spin
  • 9.9. Parameter Estimation Methods for Spins
  • 9.10. The Case of the Grumman/American AA-1B
  • 9.11. The Break with the Past
  • 9.12. Effects of Wing Design on Spin Entry and Recovery
  • 9.13. Drop and Radio-Controlled Model Testing
  • 9.14. Remotely Piloted Spin Model Testing
  • 9.15. Criteria for Departure Resistance
  • 9.16. Vortex Effects and Self-Induced Wing Rock
  • 9.17. Bifurcation Theory
  • 9.18. Departures in Modern Fighters
  • 10. Tactical Airplane Maneuverability
  • 10.1. How Fast Should Fighter Airplanes Roll?
  • 10.2. Air-to-Air Missile-Armed Fighters
  • 10.3. Control Sensitivity and Overshoots in Rapid Pullups
  • 10.3.1. Equivalent System Methods
  • 10.3.2. Criteria Based on Equivalent Systems
  • 10.3.3. Time Domain-Based Criteria
  • 10.4. Rapid Rolls to Steep Turns
  • 10.5. Supermaneuverability, High Angles of Attack
  • 10.6. Unsteady Aerodynamics in the Supermaneuverability Regime
  • 10.6.1. The Transfer Function Model for Unsteady Flow
  • 10.7. The Inverse Problem
  • 10.8. Thrust-Vector Control for Supermaneuvering
  • 10.9. Forebody Controls for Supermaneuvering
  • 10.10. Longitudinal Control for Recovery
  • 10.11. Concluding Remarks
  • 11. High Mach Number Difficulties
  • 11.1. A Slow Buildup
  • 11.2. The First Dive Pullout Problems
  • 11.3. P-47 Dives at Wright Field
  • 11.4. P-51 and P-39 Dive Difficulties
  • 11.5. Transonic Aerodynamic Testing
  • 11.6. Invention of the Sweptback Wing
  • 11.7. Sweptback Wings Are Tamed at Low Speeds
  • 11.7.1. Wing Leading-Edge Devices
  • 11.7.2. Fences and Wing Engine Pylons
  • 11.8. Trim Changes Due to Compressibility
  • 11.9. Transonic Pitchup
  • 11.10. Supersonic Directional Instability
  • 11.11. Principal Axis Inclination Instability
  • 11.12. High-Altitude Stall Buffet
  • 11.13. Supersonic Altitude Stability
  • 11.14. Stability and Control of Hypersonic Airplanes
  • 12. Naval Aircraft Problems
  • 12.1. Standard Carrier Approaches
  • 12.2. Aerodynamic and Thrust Considerations
  • 12.3. Theoretical Studies
  • 12.4. Direct Lift Control
  • 12.5. The T-45A Goshawk
  • 12.6. The Lockheed S-3A Viking
  • 12.7. Concluding Remarks
  • 13. Ultralight and Human-Powered Airplanes
  • 13.1. Apparent Mass Effects
  • 13.2. Commercial and Kit-Built Ultralight Airplanes
  • 13.3. The Gossamer and MIT Human-Powered Aircraft
  • 13.4. Ultralight Airplane Pitch Stability
  • 13.5. Turning Human-Powered Ultralight Airplanes
  • 13.6. Concluding Remarks
  • 14. Fuel Slosh, Deep Stall, and More
  • 14.1. Fuel Shift and Dynamic Fuel Slosh
  • 14.2. Deep Stall
  • 14.3. Ground Effect
  • 14.4. Directional Stability and Control in Ground Rolls
  • 14.5. Vee- or Butterfly Tails
  • 14.6. Control Surface Buzz
  • 14.7. Rudder Lock and Dorsal Fins
  • 14.8. Flight Vehicle System Identification from Flight Test
  • 14.8.1. Early Attempts at Identification
  • 14.8.2. Knob Twisting
  • 14.8.3. Modern Identification Methods
  • 14.8.4. Extensions to Nonlinearities and Unsteady Flow Regimes
  • 14.9. Lifting Body Stability and Control
  • 15. Safe Personal Airplanes
  • 15.1. The Guggenheim Safe Airplane Competition
  • 15.2. Progress after the Guggenheim Competition
  • 15.3. Early Safe Personal Airplane Designs
  • 15.4. 1948 and 1966 NACA and NASA Test Series
  • 15.5. Control Friction and Apparent Spiral Instability
  • 15.6. Wing Levelers
  • 15.7. The Role of Displays
  • 15.8. Inappropriate Stability Augmentation
  • 15.9. Unusual Aerodynamic Arrangements
  • 15.10. Blind-Flying Demands on Stability and Control
  • 15.10.1. Needle, Ball, and Airspeed
  • 15.10.2. Artificial Horizon, Directional Gyro, and Autopilots
  • 15.11. Single-Pilot IFR Operation
  • 15.12. The Prospects for Safe Personal Airplanes
  • 16. Stability and Control Issues with Variable Sweep
  • 16.1. The First Variable-Sweep Wings - Rotation and Translation
  • 16.2. The Rotation-Only Breakthrough
  • 16.3. The F-111 Aardvark, or TFX
  • 16.4. The F-14 Tomcat
  • 16.5. The Rockwell B-1
  • 16.6. The Oblique or Skewed Wing
  • 16.7. Other Variable-Sweep Projects
  • 17. Modern Canard Configurations
  • 17.1. Burt Rutan and the Modern Canard Airplane
  • 17.2. Canard Configuration Stall Characteristics
  • 17.3. Directional Stability and Control of Canard Airplanes
  • 17.4. The Penalty of Wing Sweepback on Low Subsonic Airplanes
  • 17.5. Canard Airplane Spin Recovery
  • 17.6. Other Canard Drawbacks
  • 17.7. Pusher Propeller Problems
  • 17.8. The Special Case of the Voyager
  • 17.9. Modern Canard Tactical Airplanes
  • 18. Evolution of the Equations of Motion
  • 18.1. Euler and Hamilton
  • 18.2. Linearization
  • 18.3. Early Numerical Work
  • 18.4. Glauert's and Later Nondimensional Forms
  • 18.5. Rotary Derivatives
  • 18.6. Stability Boundaries
  • 18.7. Wind, Body, Stability, and Principal Axes
  • 18.8. Laplace Transforms, Frequency Response, and Root Locus
  • 18.9. The Modes of Airplane Motion
  • 18.9.1. Literal Approximations to the Modes
  • 18.10. Time Vector Analysis
  • 18.11. Vector, Dyadic, Matrix, and Tensor Forms
  • 18.12. Atmospheric Models
  • 18.13. Integration Methods and Closed Forms
  • 18.14. Steady-State Solutions
  • 18.15. Equations of Motion Extension to Suborbital Flight
  • 18.15.1. Heading Angular Velocity Correction and Initialization
  • 18.16. Suborbital Flight Mechanics
  • 18.17. Additional Special Forms of the Equations of Motion
  • 19. The Elastic Airplane
  • 19.1. Aeroelasticity and Stability and Control
  • 19.2. Wing Torsional Divergence
  • 19.3. The Semirigid Approach to Wing Torsional Divergence
  • 19.4. The Effect of Wing Sweep on Torsional Divergence
  • 19.5. Aileron-Reversal Theories
  • 19.6. Aileron-Reversal Flight Experiences
  • 19.7. Spoiler Ailerons Reduce Wing Twisting in Rolls
  • 19.8. Aeroelastic Effects on Static Longitudinal Stability
  • 19.9. Stabilizer Twist and Speed Stability
  • 19.10. Dihedral Effect of a Flexible Wing
  • 19.11. Finite-Element or Panel Methods in Quasi-Static Aeroelasticity
  • 19.12. Aeroelastically Corrected Stability Derivatives
  • 19.13. Mean and Structural Axes
  • 19.14. Normal Mode Analysis
  • 19.15. Quasi-Rigid Equations
  • 19.16. Control System Coupling with Elastic Modes
  • 19.17. Reduced-Order Elastic Airplane Models
  • 19.18. Second-Order Elastic Airplane Models
  • 19.19. Concluding Remarks
  • 20. Stability Augmentation
  • 20.1. The Essence of Stability Augmentation
  • 20.2. Automatic Pilots in History
  • 20.3. The Systems Concept
  • 20.4. Frequency Methods of Analysis
  • 20.5. Early Experiments in Stability Augmentation
  • 20.5.1. The Boeing B-47 Yaw Damper
  • 20.5.2. The Northrop YB-49 Yaw Damper
  • 20.5.3. The Northrop F-89 Sideslip Stability Augmentor
  • 20.6. Root Locus Methods of Analysis
  • 20.7. Transfer-Function Numerators
  • 20.8. Transfer-Function Dipoles
  • 20.9. Command Augmentation Systems
  • 20.9.1. Roll-Ratcheting
  • 20.10. Superaugmentation, or Augmentation for Unstable Airplanes
  • 20.11. Propulsion-Controlled Aircraft
  • 20.12. The Advent of Digital Stability Augmentation
  • 20.13. Practical Problems with Digital Systems
  • 20.14. Tine Domain and Linear Quadratic Optimization
  • 20.15. Linear Quadratic Gaussian Controllers
  • 20.16. Failed Applications of Optimal Control
  • 20.17. Robust Controllers, Adaptive Systems
  • 20.18. Robust Controllers, Singular Value Analysis
  • 20.19. Decoupled Controls
  • 20.20. Integrated Thrust Modulation and Vectoring
  • 20.21. Concluding Remarks
  • 21. Flying Qualities Research Moves with the Times
  • 21.1. Empirical Approaches to Pilot-Induced Oscillations
  • 21.2. Compensatory Operation and Model Categories
  • 21.3. Crossover Model
  • 21.4. Pilot Equalization for the Crossover Model
  • 21.5. Algorithmic (Linear Optimal Control) Model
  • 21.6. The Crossover Model and Pilot-Induced Oscillations
  • 21.7. Gibson Approach
  • 21.8. Neal-Smith Approach
  • 21.9. Bandwidth-Phase Delay Criteria
  • 21.10. Landing Approach and Turn Studies
  • 21.11. Implications for Modern Transport Airplanes
  • 21.12. Concluding Remarks
  • 22. Challenge of Stealth Aerodynamics
  • 22.1. Faceted Airframe Issues
  • 22.2. Parallel-Line Planform Issues
  • 22.3. Shielded Vertical Tails and Leading-Edge Flaps
  • 22.4. Fighters Without Vertical Tails
  • 23. Very Large Aircraft
  • 23.1. The Effect of Higher Wing Loadings
  • 23.2. The Effect of Folding Wings
  • 23.3. Altitude Response During Landing Approach
  • 23.4. Longitudinal Dynamics
  • 23.5. Roll Response of Large Airplanes
  • 23.6. Large Airplanes with Reduced-Static Longitudinal Stability
  • 23.7. Large Supersonic Airplanes
  • 23.8. Concluding Remarks
  • 24. Work Still to Be Done
  • Short Biographies of Some Stability and Control Figures
  • References and Core Bibliography
  • Index