Digital image processing /
Saved in:
Author / Creator: | Pratt, William K. |
---|---|
Imprint: | New York : Wiley, c1978. |
Description: | x, 750 p. : ill. ; 24 cm. |
Language: | English |
Subject: | |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/294878 |
Table of Contents:
- Preface
- Acknowledgments
- Part 1. Continuous Image Characterization
- 1. Continuous Image Mathematical Characterization
- 1.1. Image Representation
- 1.2. Two-Dimensional Systems
- 1.3. Two-Dimensional Fourier Transform
- 1.4. Image Stochastic Characterization
- 2. Psychophysical Vision Properties
- 2.1. Light Perception
- 2.2. Eye Physiology
- 2.3. Visual Phenomena
- 2.4. Monochrome Vision Model
- 2.5. Color Vision Model
- 3. Photometry and Colorimetry
- 3.1. Photometry
- 3.2. Color Matching
- 3.3. Colorimetry Concepts
- 3.4. Tristimulus Value Transformation
- 3.5. Color Spaces
- Part 2. Digital Image Characterization
- 4. Image Sampling and Reconstruction
- 4.1. Image Sampling and Reconstruction Concepts
- 4.2. Image Sampling Systems
- 4.3. Image Reconstruction Systems
- 5. Discrete Image Mathematical Representation
- 5.1. Vector-Space Image Representation
- 5.2. Generalized Two-Dimensional Linear Operator
- 5.3. Image Statistical Characterization
- 5.4. Image Probability Density Models
- 5.5. Linear Operator Statistical Representation
- 6. Image Quantization
- 6.1. Scalar Quantization
- 6.2. Processing Quantized Variables
- 6.3. Monochrome and Color Image Quantization
- Part 3. Discrete Two-Dimensional Linear Processing
- 7. Superposition and Convolution
- 7.1. Finite-Area Superposition and Convolution
- 7.2. Sampled Image Superposition and Convolution
- 7.3. Circulant Superposition and Convolution
- 7.4. Superposition and Convolution Operator Relationships
- 8. Unitary Transforms
- 8.1. General Unitary Transforms
- 8.2. Fourier Transform
- 8.3. Cosine, Sine, and Hartley Transforms
- 8.4. Hadamard, Haar, and Daubechies Transforms
- 8.5. Karhunen--Loeve Transform
- 9. Linear Processing Techniques
- 9.1. Transform Domain Processing
- 9.2. Transform Domain Superposition
- 9.3. Fast Fourier Transform Convolution
- 9.4. Fourier Transform Filtering
- 9.5. Small Generating Kernel Convolution
- Part 4. Image Improvement
- 10. Image Enhancement
- 10.1. Contrast Manipulation
- 10.2. Histogram Modification
- 10.3. Noise Cleaning
- 10.4. Edge Crispening
- 10.5. Color Image Enhancement
- 10.6. Multispectral Image Enhancement
- 11. Image Restoration Models
- 11.1. General Image Restoration Models
- 11.2. Optical Systems Models
- 11.3. Photographic Process Models
- 11.4. Discrete Image Restoration Models
- 12. Point and Spatial Image Restoration Techniques
- 12.1. Sensor and Display Point Nonlinearity Correction
- 12.2. Continuous Image Spatial Filtering Restoration
- 12.3. Pseudoinverse Spatial Image Restoration
- 12.4. SVD Pseudoinverse Spatial Image Restoration
- 12.5. Statistical Estimation Spatial Image Restoration
- 12.6. Constrained Image Restoration
- 12.7. Blind Image Restoration
- 13. Geometrical Image Modification
- 13.1. Translation, Minification, Magnification, and Rotation
- 13.2. Spatial Warping
- 13.3. Perspective Transformation
- 13.4. Camera Imaging Model
- 13.5. Geometrical Image Resampling
- Part 5. Image Analysis
- 14. Morphological Image Processing
- 14.1. Binary Image Connectivity
- 14.2. Binary Image Hit or Miss Transformations
- 14.3. Binary Image Shrinking, Thinning, Skeletonizing, and Thickening
- 14.4. Binary Image Generalized Dilation and Erosion
- 14.5. Binary Image Close and Open Operations
- 14.6. Gray Scale Image Morphological Operations
- 15. Edge Detection
- 15.1. Edge, Line, and Spot Models
- 15.2. First-Order Derivative Edge Detection
- 15.3. Second-Order Derivative Edge Detection
- 15.4. Edge-Fitting Edge Detection
- 15.5. Luminance Edge Detector Performance
- 15.6. Color Edge Detection
- 15.7. Line and Spot Detection
- 16. Image Feature Extraction
- 16.1. Image Feature Evaluation
- 16.2. Amplitude Features
- 16.3. Transform Coefficient Features
- 16.4. Texture Definition
- 16.5. Visual Texture Discrimination
- 16.6. Texture Features
- 17. Image Segmentation
- 17.1. Amplitude Segmentation Methods
- 17.2. Clustering Segmentation Methods
- 17.3. Region Segmentation Methods
- 17.4. Boundary Detection
- 17.5. Texture Segmentation
- 17.6. Segment Labeling
- 18. Shape Analysis
- 18.1. Topological Attributes
- 18.2. Distance, Perimeter, and Area Measurements
- 18.3. Spatial Moments
- 18.4. Shape Orientation Descriptors
- 18.5. Fourier Descriptors
- 19. Image Detection and Registration
- 19.1. Template Matching
- 19.2. Matched Filtering of Continuous Images
- 19.3. Matched Filtering of Discrete Images
- 19.4. Image Registration
- Part 6. Image Processing Software
- 20. PIKS Image Processing Software
- 20.1. PIKS Functional Overview
- 20.2. PIKS Core Overview
- 21. PIKS Image Processing Programming Exercises
- 21.1. Program Generation Exercises
- 21.2. Image Manipulation Exercises
- 21.3. Colour Space Exercises
- 21.4. Region-of-Interest Exercises
- 21.5. Image Measurement Exercises
- 21.6. Quantization Exercises
- 21.7. Convolution Exercises
- 21.8. Unitary Transform Exercises
- 21.9. Linear Processing Exercises
- 21.10. Image Enhancement Exercises
- 21.11. Image Restoration Models Exercises
- 21.12. Image Restoration Exercises
- 21.13. Geometrical Image Modification Exercises
- 21.14. Morphological Image Processing Exercises
- 21.15. Edge Detection Exercises
- 21.16. Image Feature Extration Exercises
- 21.17. Image Segmentation Exercises
- 21.18. Shape Analysis Exercises
- 21.19. Image Detection and Registration Exercises
- Appendix 1. Vector-Space Algebra Concepts
- Appendix 2. Color Coordinate Conversion
- Appendix 3. Image Error Measures
- Bibliography
- Index