Timing of behavior : neural, psychological, and computational perspectives /

Saved in:
Bibliographic Details
Imprint:Cambridge, Mass. : MIT Press, c1998.
Description:xii, 384 p. : ill. ; 24 cm.
Language:English
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/3308813
Hidden Bibliographic Details
Other authors / contributors:Rosenbaum, David A.
Collyer, Charles E.
ISBN:0262181886 (alk. paper)
Notes:"A Bradford book."
Includes bibliographical references and indexes.
Table of Contents:
  • Foreword
  • Preface
  • Part I. Neural Perspectives
  • 1. Predictive Timing under Temporal Uncertainty: The Time Derivative Model of the Conditioned Response
  • Abstract
  • 1.1. Introduction
  • 1.2. The TD Model of the Conditioned Response
  • 1.3. Formal Statement of the TD Model
  • 1.4. Simulations of CR Timing by the TD Model
  • 1.5. Prediction Strategies and CR Topography
  • 1.6. CR Topography Under Predictive Uncertainty
  • 1.7. Structure of Timing
  • 1.8. Implementation of TD Learning in the Cerebellum
  • 1.9. Summary and Conclusions
  • Notes
  • References
  • 2. Sequencing and Timing Operations of the Basal Ganglia
  • Abstract
  • 2.1. Introduction
  • 2.2. Neuroanatomy and Neurophysiology of the Basal Ganglia
  • 2.3. Cognitive-Motor Functions of the Basal Ganglia
  • 2.4. The Role of the Basal Ganglia in Programming Sequences
  • 2.5. The Role of the Basal Ganglia in Programming and Switching
  • 2.6. The Basal Ganglia as a Regulator of Timing
  • 2.7. Concluding Remarks
  • Acknowledgments
  • References
  • 3. Interresponse Intervals in Continuation Tapping
  • Abstract
  • 3.1. Introduction
  • 3.2. Continuation Tapping
  • 3.3. The Fine Structure of IRI Sequences: The Wing-Kristofferson Model
  • 3.4. Which Measure of Variability Grows Linearly with Duration?
  • 3.5. The Form of the IRI Distribution
  • 3.6. Accuracy of Reproduction: The Oscillator Signature
  • 3.7. A Multiple Oscillator Version of Scalar Timing
  • 3.8. The Temporal Spectrum Revisited
  • Acknowledgments
  • Notes
  • References
  • 4. Touching Surfaces for Control, Not Support. John J. Jeka
  • Abstract
  • 4.1. Introduction
  • 4.2. Experimental Results
  • 4.3. Neurophysiological Mechanisms
  • 4.4. Timing and Perception-Action Coupling
  • 4.5. Summary
  • Acknowledgments
  • References
  • Part II. Psychological Perspectives
  • 5. The Perception of Segmentation in Sequences: Local Information Provides the Building Blocks for Global Structure
  • Abstract
  • 5.1. Introduction
  • 5.2. Information Theory and Boundary Segmentation
  • 5.3. Methods
  • 5.4. Models
  • 5.5. Local Information Predictions
  • 5.6. Results
  • 5.7. Discussion
  • Acknowledgments
  • References
  • 6. Musical Motion in Perception and Performance
  • Abstract
  • 6.1. Introduction
  • 6.2. Experiment
  • 6.3. Discussion
  • Acknowledgments
  • Notes
  • References
  • 7. Concurrent Processing during Sequenced Finger Tapping
  • Abstract
  • 7.1. Introduction
  • 7.2. Method
  • 7.3. Results
  • 7.4. Discussion
  • Acknowledgments
  • References
  • 8. Memory Mixing in Duration Bisection
  • Abstract
  • 8.1. Introduction
  • 8.2. Scalar Timing Model
  • 8.3. Signal Modality Experiments
  • 8.4. Modifications Of The Scalar Timing Model
  • 8.5. Stimulus Spacing
  • 8.6. Summary
  • References
  • 9. The Regulation of Contact in Rhythmic Tapping
  • Abstract
  • 9.1. Introduction
  • 9.2. Method
  • 9.3. Results
  • 9.4. Discussion
  • Acknowledgments
  • References
  • Part III. Computational Perspectives
  • 10. Broadcast Theory of Timing
  • Abstract
  • 10.1. Introduction
  • 10.2. Broadcast Theory
  • 10.3. Clock Models Versus Coupled-Oscillator Models
  • 10.4. Special Intervals
  • 10.5. Perception of Time Intervals
  • 10.6. Common Timing for Perception and Production
  • 10.7. Final Remarks
  • Acknowledgments
  • References
  • 11. Dynamics of Human Intersegmental Coordination: Theory and Research
  • Abstract
  • 11.1. Introduction
  • 11.2. Historical Antecedents: Bernstein and von Holst
  • 11.3. Mathematical Formalisms
  • 11.4. Empirical Discoveries
  • 11.5. Implications and Future Directions
  • 11.6. Conclusion
  • Acknowledgments
  • References
  • 12. Constraints in the Emergence of Preferred Locomotory Patterns
  • Abstract
  • 12.1. Introduction
  • 12.2. Degrees of Freedom and Context-Conditioned Variability
  • 12.3. Guidelines for a Solution
  • 12.4. The Concept and a Taxonomy of Constraints
  • 12.5. Constraints in Locomotion
  • 12.6. Dynamic Constraints on Gait
  • 12.7. The Force-Driven Hybrid (Pendulum and Spring) Model of Locomotion
  • 12.8. Optimality Constraints and the Hybrid Model
  • 12.9. Generalizability of the Hybrid Model
  • 12.10. Individual Constraints and the Hybrid Model
  • 12.11. Thermodynamic Constraints as a Basis for Gait Transitions
  • 12.12. Summary
  • References
  • 13. A Dynamical Model of the Coupling between Posture and Gait
  • Abstract
  • 13.1. Introduction
  • 13.2. The Postural System
  • 13.3. The Locomotor System
  • 13.4. Parameterizing the Component Dynamics
  • 13.5. Coupling the Postural and Locomotor Systems
  • 13.6. The Complete Model and Its Successes
  • 13.7. The Model's Failures
  • 13.8. What Have We Learned?
  • 13.9. In Sum
  • Acknowledgments
  • Notes
  • References
  • 14. Dynamics of Human Gait Transitions
  • Abstract
  • 14.1. Introduction
  • 14.2. The Origin of Organization
  • 14.3. Gait Transitions
  • 14.4. A Dynamical Approach
  • 14.5. Energetics of Locomotion
  • 14.6. Task Dynamics
  • 14.7. Conclusions
  • Acknowledgments
  • References
  • 15. A Computational Model for Repetitive Motion
  • Abstract
  • 15.1. Introduction
  • 15.2. Discrete Configuration Space Representation
  • 15.3. Harmonic Potentials
  • 15.4. Energy-Referenced Control
  • 15.5. Simulation of the Human Leg
  • 15.6. Summary and Discussion
  • Appendix 15.A. Equation of Motion
  • Acknowledgments
  • References
  • Contributors
  • Author Index
  • Subject Index