X-ray spectroscopy in astrophysics : lectures held at the Astrophysics School X, organized by the European Astrophysics Doctoral Network (EADN) in Amsterdam, the Netherlands, September 22-October 3, 1997 /
Saved in:
Meeting name: | Astrophysics School (10th : 1997 : Amsterdam, Netherlands) |
---|---|
Imprint: | Berlin ; New York : Springer, c1999. |
Description: | xv, 530 p. |
Language: | English |
Series: | Lecture notes in physics. 520 |
Subject: | |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/3667628 |
Table of Contents:
- Continuum Processes in X-Ray and ¿-Ray Astronomy
- 1. Introduction
- 2. Continuum Radiation Processes from Hot and Relativistic Plasmas
- 3. Basic Radiation Concepts
- 3.1. The radiation of an accelerated charged particle - J.J. Thomson's treatment
- 3.2. Thomson scattering
- 3.3. Radiation of an accelerated electron - improved version
- 3.4. A useful relativistic invariant
- 3.5. Parseval's theorem and the spectral distribution of the radiation of an accelerated electron
- 4. Bremsstrahlung
- 4.1. Encounters between charged particles
- 4.2. The spectrum and energy loss rate of bremsstrahlung
- 4.3. Non-relativistic and thermal bremsstrahlung
- 4.4. Non-relativistic and relativistic bremsstrahlung losses
- 5. Hot Gas in Clusters of Galaxies
- 5.1. The properties of rich clusters of galaxies
- 5.2. Hot gas in clusters of galaxies and isothermal gas spheres
- 5.3. X-ray observations of hot gas in clusters of galaxies
- 5.4. Cooling flows in clusters of galaxies
- 5.5. The Sunyaev-Zeldovich effect in hot intra-cluster gas
- 5.6. The X-ray thermal bremsstrahlung of hot intergalactic gas
- 5.7. The origin of the hard X-ray background
- 6. Synchrotron Radiation
- 6.1. Motion of an electron in a uniform, static magnetic field
- 6.2. The total energy loss rate
- 6.3. Non-relativistic gyroradiation and cyclotron radiation
- 6.4. The spectral distribution of radiation from a single electron - physical arguments
- 6.5. The spectrum of synchrotron radiation - improved version
- 6.6. The synchrotron radiation of a power law distribution of electron energies
- 6.7. Why is synchrotron radiation taken so seriously?
- 6.8. Synchrotron self-absorption
- 6.9. Distortions of injection spectra of the electrons
- 6.10. The energetics of sources of synchrotron radiation
- 7. Inverse Compton Scattering
- 8. Synchro-Compton Radiation and the Inverse Compton Catastrophe
- 9. ¿-Ray Processes, Photon-Photon Interactions and the Compactness Parameter
- 9.1. Electron-positron annihilation
- 9.2. Photon photon collisions
- 9.3. The compactness parameter
- 10. Rolativistic Beaming
- 11. The Acceleration of Charged Particles
- References
- Atomic Physics of Hot Plasmas
- 1. Introduction
- I. X-Ray Spectral Modeling of Hot Plasmas
- 2. Radiation Processes and Plasma Models
- 3. Spectral Modeling of Optically Thin Plasmas
- 3.1. General scheme
- 3.2. Spectral fitting with SPEX
- 4. Coronal Model
- 4.1. Deviations from the coronal CIE model approximation
- II. Ionization and Recombination in a Coronal Plasma
- 5. Ionization Balance
- 5.1. Accuracy of atomic physics for the ionization balance
- 5.2. Update of the ionization balance by improved calculations for the rate coefficients
- 6. Rate Coefficients for Ionization
- 6.1. Collisional ionization
- 7. Rate Coefficients for Recombination
- 7.1. Radiative recombination; the Milne equation
- 7.2. Dielectronic recombination
- III. Formation of X-Ray Spectra in a Coronal Plasma
- 8. Line Radiation
- 8.1. Excitation processes
- 8.2. Radiative transitions
- 9. Continuum Radiation
- IV. Diagnostics of Plasma Parameters
- 10. Electron Temperature
- 11. Elemental Abundances
- 12. Ionization Balance in NEI
- 13. Electron Density
- 14. Differential Emission Measure
- 15. Diagnostics of Satellite Lines
- 15.1. Dielectronic recombination (DR) satellite intensity
- 15.2. Inner-shell excitation (IE)
- 15.3. Inner-shell ionization (II)
- 15.4. Diagnostics
- 16. Comparison of Calculated Spectra and Accuracy
- 17. Summary
- References
- The X-Ray Spectral Properties of Photoionized Plasmas and Transient Plasmas
- 1. Introduction
- 2. Comptonization
- 2.1. Energy transfer in a single Compton scatter
- 2.2. The Compton y parameter
- 2.3. The Kompaneets equation
- 2.4. Compton heating and cooling
- 2.5. The Compton temperature
- 3. Spectroscopy of X-Ray Photoionized Plasmas
- 3.1. X-ray nebulae
- 3.2. The ionization parameter: ovorionization in the nebula
- 3.3. Differential emission measure distributions
- 3.4. Radiative recombination continua
- 3.5. Spectral signatures of recombination kinetics
- 3.6. Density diagnostics in X-ray photoionized plasmas
- 3.7. Fluorescent K-shell emission
- 3.8. Dielectronic recombination in X-ray photoionized plasmas
- 4. Transient Phases of Ionization Disequilibrium
- 4.1. Equilibration time and ionization time
- 4.2. A two-stage system
- 4.3. A three-stage system
- 4.4. Metastable energy levels in rapidly ionizing plasmas
- 4.5. A worked example: transient ionization of oxygen
- References
- X-ltay Spectroscopic Observations with ASCA and BeppoSAX
- 1. Introduction
- 1.1. X-ray spectroscopy
- 1.2. The ASCA and BeppoSAX missions
- 1.3. The most prominent spectral features observable with ASCA and BeppoSAX
- 2. A Few Notes on Spectral Data Fitting
- 2.1. Introduction
- 2.2. Data binning
- 2.3. Model binning
- 2.4. Calibration uncertainties
- 2.5. Spectral deconvolution
- 2.6. Statistics
- 2.7. Low count rates
- 2.8. Data presentation
- 2.9. Plasma models
- 3. Stellar Coronae
- 3.1. Introduction
- 3.2. Differential emission measure distribution techniques
- 3.3. Temperature structure
- 3.4. Abundances
- 3.5. Flares
- 3.6. Stellar evolution
- 4. Hot Stars
- 4.1. Introduction
- 4.2. Normal O and B stars
- 4.3. Luminous blue variables
- 4.4. Wolf-Rayet stars
- 5. Protostars and T Tauri Stars
- 5.1. Introduction
- 5.2. X-ray emission from protostars
- 5.3. X-ray emission from T Tauri stars
- 6. Cataclysmic Variables
- 6.1. Introduction
- 6.2. Non-magnetic cataclysmic variables
- 6.3. Intermediate polars
- 6.4. Polars
- 7. High-Mass X-Ray Binaries
- 7.1. Introduction
- 7.2. Vela X-l
- 7.3. Cyg X-3
- 7.4. Cen X-3
- 7.5. SS 433
- 7.6. Other cases
- 8. Low-Mass X-Ray Binaries
- 8.1. Introduction
- 8.2. 4U 1626-67
- 8.3. Cir X-1
- 9. Supernova Remnants
- 9.1. Introduction
- 9.2. Oxygen-rich remnants: Cas A
- 9.3. Young type la remnants
- 9.4. Old shell-like remnants
- 9.5. Synchrotron X-ray emission from SNRs
- 9.6. Crab-like remnants
- 9.7. Center-filled thermal remnants
- 9.8. Jets interacting with SNRs
- 9.9. Isolated pulsars
- 9.10. The Magellanic Cloud SNRs
- 9.11. Supernova explosions in distant galaxies
- 10. Extended X-Ray Emission from Normal Galaxies
- 10.1. The galactic ridge
- 10.2. The galactic center
- 10.3. X-ray emission from other normal galaxies
- 11. Seyfert 1 Galaxies
- 11.1. The iron line
- 11.2. Warm absorbers
- 11.3. The power law component
- 11.4. Soft components
- 11.5. Low-luminosity AGN
- 11.6. Broad-line radio galaxies
- 12. Seyfert 2 Galaxies
- 12.1. Introduction
- 12.2. NGC 1068
- 12.3. NGC 6552
- 12.4. NGC 4945
- 12.5. NGC 1808
- 12.6. Other cases
- 12.7. Intermediate cases: narrow-line emission galaxies and others
- 13. Quasars
- 13.1. Radio-quiet quasars
- 13.2. Radio-loud quasars
- 13.3. Type 2 quasars
- 13.4. BL Lac objects
- 14. Clusters of Galaxies
- 14.1. Temperature distribution of the hot medium
- 14.2. The cooling flow and the central temperature distribution
- 14.3. Mass distribution
- 14.4. Groups of galaxies
- 14.5. Cluster mergers and dynamical evolution
- 14.6. Optical-depth effects
- 14.7. The quest for the Hubble constant
- 14.8. Abundances in nearby clusters
- 14.9. Abundances in distant clusters
- 14.10. Abundance gradients
- References
- Future X-Ray Spectroscopy Missions
- 1. Introduction
- 2. Resolving Powers of Interest in Astrophysical X-Ray Spectroscopy
- 2.1. Ionization stage spectroscopy
- 2.2. Excitation mechanism
- 2.3. Density diagnostics
- 2.4. Satellite line spectroscopy
- 2.5. Radiative recombination continuum spectroscopy
- 2.6. Thermal Doppler broadening
- 2.7. Compton scattering effects
- 2.8. Raman scattering
- 2.9. Fluorescence spectroscopy
- 2.10. EXAFS spectroscopy
- 2.11. Radial-velocity spectroscopy
- 3. X-Ray Astrophysical Spectrometers
- 3.1. Diffractive spectrometers
- 3.2. Non-diffractive spectrometers
- 3.3. Comparison with astrophysically significant resolving powers
- 3.4. The Rowland circle
- 4. The High Resolution X-Ray Spectrometers on AXAF
- 4.1. Introduction
- 4.2. The high energy transmission grating spectrometer
- 4.3. The diffraction efficiency of an X-ray transmission grating
- 4.4. The low energy transmission grating spectrometer
- 4.5. In Von Laue and Debye's footsteps: scattering by random fluctuations in the properties of a transmission grating
- 5. The Reflection Grating Spectrometers on XMM
- 5.1. Introduction
- 5.2. Properties of reflection gratings, and design of a grazing-incidence reflection grating spectrometer
- 5.3. Implementation of the design, and actual performance of the RGS
- 5.4. Examples
- 6. The Objective Crystal Spectrometer on Spectrum X/¿
- 7. The Microcalorimeter Experiment on ASTRO-E
- 7.1. Introduction
- 7.2. Thermodynamic fluctuations
- 7.3. An alternative derivation
- 7.4. The microcalorimeter on ASTRO-E
- 8. The 21st Century
- References
- New Developments in X-Ray Optics
- 1. Introduction
- 1.1. What is or are X-ray optics?
- 1.2. The fundamental interaction utilised in X-ray optics
- 1.3. The challenge of X-ray optics in astronomy
- 2. X-Ray Dispersion Theory
- 2.1. The classical electromagnetic theory
- 2.2. The origin of dispersion - optical constants for X rays
- 2.3. The Kramers Kronig relations measuring and calculating the refraction index for X rays
- 2.4. EXAFs
- 3. The Reflection of X Rays
- 3.1. Fresnel reflection
- 3.2. Reflection from multi-layers
- 3.3. Reflection from crystals
- 3.4. Reflection and transmission gratings