X-ray spectroscopy in astrophysics : lectures held at the Astrophysics School X, organized by the European Astrophysics Doctoral Network (EADN) in Amsterdam, the Netherlands, September 22-October 3, 1997 /

Saved in:
Bibliographic Details
Meeting name:Astrophysics School (10th : 1997 : Amsterdam, Netherlands)
Imprint:Berlin ; New York : Springer, c1999.
Description:xv, 530 p.
Language:English
Series:Lecture notes in physics. 520
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/3667628
Hidden Bibliographic Details
Other authors / contributors:Paradijs, J. van.
Bleeker, J. A. M.
ISBN:3540655484 (acid-free paper)
Notes:Includes bibliographical references and indexes.
Table of Contents:
  • Continuum Processes in X-Ray and ¿-Ray Astronomy
  • 1. Introduction
  • 2. Continuum Radiation Processes from Hot and Relativistic Plasmas
  • 3. Basic Radiation Concepts
  • 3.1. The radiation of an accelerated charged particle - J.J. Thomson's treatment
  • 3.2. Thomson scattering
  • 3.3. Radiation of an accelerated electron - improved version
  • 3.4. A useful relativistic invariant
  • 3.5. Parseval's theorem and the spectral distribution of the radiation of an accelerated electron
  • 4. Bremsstrahlung
  • 4.1. Encounters between charged particles
  • 4.2. The spectrum and energy loss rate of bremsstrahlung
  • 4.3. Non-relativistic and thermal bremsstrahlung
  • 4.4. Non-relativistic and relativistic bremsstrahlung losses
  • 5. Hot Gas in Clusters of Galaxies
  • 5.1. The properties of rich clusters of galaxies
  • 5.2. Hot gas in clusters of galaxies and isothermal gas spheres
  • 5.3. X-ray observations of hot gas in clusters of galaxies
  • 5.4. Cooling flows in clusters of galaxies
  • 5.5. The Sunyaev-Zeldovich effect in hot intra-cluster gas
  • 5.6. The X-ray thermal bremsstrahlung of hot intergalactic gas
  • 5.7. The origin of the hard X-ray background
  • 6. Synchrotron Radiation
  • 6.1. Motion of an electron in a uniform, static magnetic field
  • 6.2. The total energy loss rate
  • 6.3. Non-relativistic gyroradiation and cyclotron radiation
  • 6.4. The spectral distribution of radiation from a single electron - physical arguments
  • 6.5. The spectrum of synchrotron radiation - improved version
  • 6.6. The synchrotron radiation of a power law distribution of electron energies
  • 6.7. Why is synchrotron radiation taken so seriously?
  • 6.8. Synchrotron self-absorption
  • 6.9. Distortions of injection spectra of the electrons
  • 6.10. The energetics of sources of synchrotron radiation
  • 7. Inverse Compton Scattering
  • 8. Synchro-Compton Radiation and the Inverse Compton Catastrophe
  • 9. ¿-Ray Processes, Photon-Photon Interactions and the Compactness Parameter
  • 9.1. Electron-positron annihilation
  • 9.2. Photon photon collisions
  • 9.3. The compactness parameter
  • 10. Rolativistic Beaming
  • 11. The Acceleration of Charged Particles
  • References
  • Atomic Physics of Hot Plasmas
  • 1. Introduction
  • I. X-Ray Spectral Modeling of Hot Plasmas
  • 2. Radiation Processes and Plasma Models
  • 3. Spectral Modeling of Optically Thin Plasmas
  • 3.1. General scheme
  • 3.2. Spectral fitting with SPEX
  • 4. Coronal Model
  • 4.1. Deviations from the coronal CIE model approximation
  • II. Ionization and Recombination in a Coronal Plasma
  • 5. Ionization Balance
  • 5.1. Accuracy of atomic physics for the ionization balance
  • 5.2. Update of the ionization balance by improved calculations for the rate coefficients
  • 6. Rate Coefficients for Ionization
  • 6.1. Collisional ionization
  • 7. Rate Coefficients for Recombination
  • 7.1. Radiative recombination; the Milne equation
  • 7.2. Dielectronic recombination
  • III. Formation of X-Ray Spectra in a Coronal Plasma
  • 8. Line Radiation
  • 8.1. Excitation processes
  • 8.2. Radiative transitions
  • 9. Continuum Radiation
  • IV. Diagnostics of Plasma Parameters
  • 10. Electron Temperature
  • 11. Elemental Abundances
  • 12. Ionization Balance in NEI
  • 13. Electron Density
  • 14. Differential Emission Measure
  • 15. Diagnostics of Satellite Lines
  • 15.1. Dielectronic recombination (DR) satellite intensity
  • 15.2. Inner-shell excitation (IE)
  • 15.3. Inner-shell ionization (II)
  • 15.4. Diagnostics
  • 16. Comparison of Calculated Spectra and Accuracy
  • 17. Summary
  • References
  • The X-Ray Spectral Properties of Photoionized Plasmas and Transient Plasmas
  • 1. Introduction
  • 2. Comptonization
  • 2.1. Energy transfer in a single Compton scatter
  • 2.2. The Compton y parameter
  • 2.3. The Kompaneets equation
  • 2.4. Compton heating and cooling
  • 2.5. The Compton temperature
  • 3. Spectroscopy of X-Ray Photoionized Plasmas
  • 3.1. X-ray nebulae
  • 3.2. The ionization parameter: ovorionization in the nebula
  • 3.3. Differential emission measure distributions
  • 3.4. Radiative recombination continua
  • 3.5. Spectral signatures of recombination kinetics
  • 3.6. Density diagnostics in X-ray photoionized plasmas
  • 3.7. Fluorescent K-shell emission
  • 3.8. Dielectronic recombination in X-ray photoionized plasmas
  • 4. Transient Phases of Ionization Disequilibrium
  • 4.1. Equilibration time and ionization time
  • 4.2. A two-stage system
  • 4.3. A three-stage system
  • 4.4. Metastable energy levels in rapidly ionizing plasmas
  • 4.5. A worked example: transient ionization of oxygen
  • References
  • X-ltay Spectroscopic Observations with ASCA and BeppoSAX
  • 1. Introduction
  • 1.1. X-ray spectroscopy
  • 1.2. The ASCA and BeppoSAX missions
  • 1.3. The most prominent spectral features observable with ASCA and BeppoSAX
  • 2. A Few Notes on Spectral Data Fitting
  • 2.1. Introduction
  • 2.2. Data binning
  • 2.3. Model binning
  • 2.4. Calibration uncertainties
  • 2.5. Spectral deconvolution
  • 2.6. Statistics
  • 2.7. Low count rates
  • 2.8. Data presentation
  • 2.9. Plasma models
  • 3. Stellar Coronae
  • 3.1. Introduction
  • 3.2. Differential emission measure distribution techniques
  • 3.3. Temperature structure
  • 3.4. Abundances
  • 3.5. Flares
  • 3.6. Stellar evolution
  • 4. Hot Stars
  • 4.1. Introduction
  • 4.2. Normal O and B stars
  • 4.3. Luminous blue variables
  • 4.4. Wolf-Rayet stars
  • 5. Protostars and T Tauri Stars
  • 5.1. Introduction
  • 5.2. X-ray emission from protostars
  • 5.3. X-ray emission from T Tauri stars
  • 6. Cataclysmic Variables
  • 6.1. Introduction
  • 6.2. Non-magnetic cataclysmic variables
  • 6.3. Intermediate polars
  • 6.4. Polars
  • 7. High-Mass X-Ray Binaries
  • 7.1. Introduction
  • 7.2. Vela X-l
  • 7.3. Cyg X-3
  • 7.4. Cen X-3
  • 7.5. SS 433
  • 7.6. Other cases
  • 8. Low-Mass X-Ray Binaries
  • 8.1. Introduction
  • 8.2. 4U 1626-67
  • 8.3. Cir X-1
  • 9. Supernova Remnants
  • 9.1. Introduction
  • 9.2. Oxygen-rich remnants: Cas A
  • 9.3. Young type la remnants
  • 9.4. Old shell-like remnants
  • 9.5. Synchrotron X-ray emission from SNRs
  • 9.6. Crab-like remnants
  • 9.7. Center-filled thermal remnants
  • 9.8. Jets interacting with SNRs
  • 9.9. Isolated pulsars
  • 9.10. The Magellanic Cloud SNRs
  • 9.11. Supernova explosions in distant galaxies
  • 10. Extended X-Ray Emission from Normal Galaxies
  • 10.1. The galactic ridge
  • 10.2. The galactic center
  • 10.3. X-ray emission from other normal galaxies
  • 11. Seyfert 1 Galaxies
  • 11.1. The iron line
  • 11.2. Warm absorbers
  • 11.3. The power law component
  • 11.4. Soft components
  • 11.5. Low-luminosity AGN
  • 11.6. Broad-line radio galaxies
  • 12. Seyfert 2 Galaxies
  • 12.1. Introduction
  • 12.2. NGC 1068
  • 12.3. NGC 6552
  • 12.4. NGC 4945
  • 12.5. NGC 1808
  • 12.6. Other cases
  • 12.7. Intermediate cases: narrow-line emission galaxies and others
  • 13. Quasars
  • 13.1. Radio-quiet quasars
  • 13.2. Radio-loud quasars
  • 13.3. Type 2 quasars
  • 13.4. BL Lac objects
  • 14. Clusters of Galaxies
  • 14.1. Temperature distribution of the hot medium
  • 14.2. The cooling flow and the central temperature distribution
  • 14.3. Mass distribution
  • 14.4. Groups of galaxies
  • 14.5. Cluster mergers and dynamical evolution
  • 14.6. Optical-depth effects
  • 14.7. The quest for the Hubble constant
  • 14.8. Abundances in nearby clusters
  • 14.9. Abundances in distant clusters
  • 14.10. Abundance gradients
  • References
  • Future X-Ray Spectroscopy Missions
  • 1. Introduction
  • 2. Resolving Powers of Interest in Astrophysical X-Ray Spectroscopy
  • 2.1. Ionization stage spectroscopy
  • 2.2. Excitation mechanism
  • 2.3. Density diagnostics
  • 2.4. Satellite line spectroscopy
  • 2.5. Radiative recombination continuum spectroscopy
  • 2.6. Thermal Doppler broadening
  • 2.7. Compton scattering effects
  • 2.8. Raman scattering
  • 2.9. Fluorescence spectroscopy
  • 2.10. EXAFS spectroscopy
  • 2.11. Radial-velocity spectroscopy
  • 3. X-Ray Astrophysical Spectrometers
  • 3.1. Diffractive spectrometers
  • 3.2. Non-diffractive spectrometers
  • 3.3. Comparison with astrophysically significant resolving powers
  • 3.4. The Rowland circle
  • 4. The High Resolution X-Ray Spectrometers on AXAF
  • 4.1. Introduction
  • 4.2. The high energy transmission grating spectrometer
  • 4.3. The diffraction efficiency of an X-ray transmission grating
  • 4.4. The low energy transmission grating spectrometer
  • 4.5. In Von Laue and Debye's footsteps: scattering by random fluctuations in the properties of a transmission grating
  • 5. The Reflection Grating Spectrometers on XMM
  • 5.1. Introduction
  • 5.2. Properties of reflection gratings, and design of a grazing-incidence reflection grating spectrometer
  • 5.3. Implementation of the design, and actual performance of the RGS
  • 5.4. Examples
  • 6. The Objective Crystal Spectrometer on Spectrum X/¿
  • 7. The Microcalorimeter Experiment on ASTRO-E
  • 7.1. Introduction
  • 7.2. Thermodynamic fluctuations
  • 7.3. An alternative derivation
  • 7.4. The microcalorimeter on ASTRO-E
  • 8. The 21st Century
  • References
  • New Developments in X-Ray Optics
  • 1. Introduction
  • 1.1. What is or are X-ray optics?
  • 1.2. The fundamental interaction utilised in X-ray optics
  • 1.3. The challenge of X-ray optics in astronomy
  • 2. X-Ray Dispersion Theory
  • 2.1. The classical electromagnetic theory
  • 2.2. The origin of dispersion - optical constants for X rays
  • 2.3. The Kramers Kronig relations measuring and calculating the refraction index for X rays
  • 2.4. EXAFs
  • 3. The Reflection of X Rays
  • 3.1. Fresnel reflection
  • 3.2. Reflection from multi-layers
  • 3.3. Reflection from crystals
  • 3.4. Reflection and transmission gratings