Statistical computing /
Saved in:
Author / Creator: | Kennedy, William J., 1936- |
---|---|
Imprint: | New York : M. Dekker, c1980. |
Description: | xi, 591 p. : ill. ; 24 cm. |
Language: | English |
Series: | Statistics, textbooks and monographs v. 33 |
Subject: | |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/371889 |
Table of Contents:
- Preface
- 1. Introduction
- 1.1. Orientation
- 1.2. Purpose
- 1.3. Prerequisites
- 1.4. Presentation of Algorithms
- 2. Computer Organization
- 2.1. Introduction
- 2.2. Components of the Digital Computer System
- 2.3. Representation of Numeric Values
- 2.3.1. Integer Mode Representation
- 2.3.2. Representation in Floating-Point Mode
- 2.4. Floating- and Fixed-Point Arithmetic
- 2.4.1. Floating-Point Arithmetic Operations
- 2.4.2. Fixed-Point Arithmetic Operations
- Exercises
- References
- 3. Error in Floating-Point Computation
- 3.1. Introduction
- 3.2. Types of Error
- 3.3. Error Due to Approximation Imposed by the Computer
- 3.4. Analyzing Error in a Finite Process
- 3.5. Rounding Error in Floating-Point Computations
- 3.6. Rounding Error in Two Common Floating-Point Calculations
- 3.7. Condition and Numerical Stability
- 3.8. Other Methods of Assessing Error in Computation
- 3.9. Summary
- Exercises
- References
- 4. Programming and Statistical Software
- 4.1. Programming Languages: Introduction
- 4.2. Components of Programming Languages
- 4.2.1. Data Types
- 4.2.2. Data Structures
- 4.2.3. Syntax
- 4.2.4. Control Structures
- 4.3. Program Development
- 4.4. Statistical Software
- References and Further Readings
- 5. Approximating Probabilities and Percentage Points in Selected Probability Distributions
- 5.1. Notation and General Considerations
- 5.1.1. Probability Distributions
- 5.1.2. Accuracy Considerations
- 5.2. General Methods in Approximation
- 5.2.1. Approximate Transformation of Random Variables
- 5.2.2. Closed Form Approximations
- 5.2.3. General Series Expansion
- 5.2.4. Exact Relationship Between Distributions
- 5.2.5. Numerical Root Finding
- 5.2.6. Continued Fractions
- 5.2.7. Gaussian Quadrature
- 5.2.8. Newton-Cotes Quadrature
- 5.3. The Normal Distribution
- 5.3.1. Normal Probabilities
- 5.3.2. Normal Percentage Points
- 5.4. Student's t Distribution
- 5.4.1. t Probabilities
- 5.4.2. t-Percentage Points
- 5.5. The Beta Distribution
- 5.5.1. Evaluating the Incomplete Beta Function
- 5.5.2. Inverting the Incomplete Beta Function
- 5.6. F Distribution
- 5.6.1. F Probabilities
- 5.6.2. F Percentage Points
- 5.7. Chi-Square Distribution
- 5.7.1. Chi-Square Probabilities
- 5.7.2. Chi-Square Percentage Points
- Exercises
- References and Further Readings
- 6. Random Numbers: Generation, Tests and Applications
- 6.1. Introduction
- 6.2. Generation of Uniform Random Numbers
- 6.2.1. Congruential Methods
- 6.2.2. Feedback Shift Register Methods
- 6.2.3. Coupled Generators
- 6.2.4. Portable Generators
- 6.3. Tests of Random Number Generators
- 6.3.1. Theoretical Tests
- 6.3.2. Empirical Tests
- 6.3.3. Selecting a Random Number Generator
- 6.4. General Techniques for Generation of Nonuniform Random Deviates
- 6.4.1. Use of the Cumulative Distribution Function
- 6.4.2. Use of Mixtures of Distributions
- 6.4.3. Rejection Methods
- 6.4.4. Table Sampling Methods for Discrete Distributions
- 6.4.5. The Alias Method for Discrete Distributions
- 6.5. Generation of Variates from Specific Distributions
- 6.5.1. The Normal Distribution
- 6.5.2. The Gamma Distribution
- 6.5.3. The Beta Distribution
- 6.5.4. The F, t, and Chi-Square Distributions
- 6.5.5. The Binomial Distribution
- 6.5.6. The Poisson Distribution
- 6.5.7. Distribution of Order Statistics
- 6.5.8. Some Other Univariate Distributions
- 6.5.9. The Multivariate Normal Distribution
- 6.5.10. Some Other Multivariate Distributions
- 6.6. Applications
- 6.6.1. The Monte Carlo Method
- 6.6.2. Sampling and Randomization
- Exercises
- References and Further Readings
- 7. Selected Computational Methods in Linear Algebra
- 7.1. Introduction
- 7.2. Methods Based on Orthogonal Transformations
- 7.2.1. Householder Transformations
- 7.2.2. Givens Transformations
- 7.2.3. The Modified Gram-Schmidt Method
- 7.2.4. Singular-value Decomposition
- 7.3. Gaussian Elimination and the Sweep Operator
- 7.4. Cholesky Decomposition and Rank-One Update
- Exercises
- References and Further Readings
- 8. Computational Methods for Multiple Linear Regression Analysis
- 8.1. Basic Computational Methods
- 8.1.1. Methods Using Orthogonal Triangularization of X
- 8.1.2. Sweep Operations and Normal Equations
- 8.1.3. Checking Programs, Computed Results and Improving Solutions Iteratively
- 8.2. Regression Model Building
- 8.2.1. All Possible Regressions
- 8.2.2. Stepwise Regression
- 8.2.3. Other Methods
- 8.2.4. A Special Case--Polynomial Models
- 8.3. Multiple Regression Under Linear Restrictions
- 8.3.1. Linear Equality Restrictions
- 8.3.2. Linear Inequality Restrictions
- Exercises
- References and Further Readings
- 9. Computational Methods for Classification Models
- 9.1. Introduction
- 9.1.1. Fixed-effects Models
- 9.1.2. Restrictions on Models and Constraints on Solutions
- 9.1.3. Reductions in Sums of Squares
- 9.1.4. An Example
- 9.2. The Special Case of Balance and Completeness for Fixed-Effects Models
- 9.2.1. Basic Definitions and Considerations
- 9.2.2. Computer-related Considerations in the Special Case
- 9.2.3. Analysis of Covariance
- 9.3. The General Problem for Fixed-Effects Models
- 9.3.1. Estimable Functions
- 9.3.2. Selection Criterion
- 9.3.3. Selection Criterion 2
- 9.3.4. Summary
- 9.4. Computing Expected Mean Squares and Estimates of Variance Components
- 9.4.1. Computing Expected Mean Squares
- 9.4.2. Variance Component Estimation
- Exercises
- References and Further Readings
- 10. Unconstrained Optimization and Nonlinear Regression
- 10.1. Preliminaries
- 10.1.1. Iteration
- 10.1.2. Function Minima
- 10.1.3. Step Direction
- 10.1.4. Step Size
- 10.1.5. Convergence of the Iterative Methods
- 10.1.6. Termination of Iteration
- 10.2. Methods for Unconstrained Minimization
- 10.2.1. Method of Steepest Descent
- 10.2.2. Newton's Method and Some Modifications
- 10.2.3. Quasi-Newton Methods
- 10.2.4. Conjugate Gradient Method
- 10.2.5. Conjugate Direction Method
- 10.2.6. Other Derivative-Free Methods
- 10.3. Computational Methods in Nonlinear Regression
- 10.3.1. Newton's Method for the Nonlinear Regression Problem
- 10.3.2. The Modified Gauss-Newton Method
- 10.3.3. The Levenberg-Marquardt Modification of Gauss-Newton
- 10.3.4. Alternative Gradient Methods
- 10.3.5. Minimization Without Derivatives
- 10.3.6. Summary
- 10.4. Test Problems
- Exercises
- References and Further Readings
- 11. Model Fitting Based on Criteria Other Than Least Squares
- 11.1. Introduction
- 11.2. Minimum L[subscript p] Norm Estimators
- 11.2.1. L[subscript 1] Estimation
- 11.2.2. L[subscript infinity] Estimation
- 11.2.3. Other L[subscript p] Estimators
- 11.3. Other Robust Estimators
- 11.4. Biased Estimation
- 11.5. Robust Nonlinear Regression
- Exercises
- References and Further Readings
- 12. Selected Multivariate Methods
- 12.1. Introduction
- 12.2. Canonical Correlations
- 12.3. Principal Components
- 12.4. Factor Analysis
- 12.5. Multivariate Analysis of Variance
- Exercises
- References and Further Readings
- Index