Structure-based ligand design /

Saved in:
Bibliographic Details
Imprint:Weinheim ; New York : Wiley-VCH, c1998.
Description:xiv, 153 p. : ill.
Language:English
Series:Methods and principles in medicinal chemistry ; v. 6
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/3905525
Hidden Bibliographic Details
Other authors / contributors:Gubernator, Klaus.
Böhm, Hans-Joachim.
ISBN:3527293434 (alk. paper)
Notes:Includes bibliographical references and index.
Table of Contents:
  • Preface
  • List of Contributors
  • 1. Rational Design of Bioactive Molecules
  • 1.1. Introduction
  • 1.1.1. From Ligand Design to Drug Discovery
  • 1.2. Source of Structural Information
  • 1.3. Classes of Therapeutic Agents
  • 1.4. Protein-Ligand Interaction
  • 1.4.1. Covalent versus Noncovalent Inhibitors
  • 1.4.2. Nonbonded Interactions in Protein-Ligand Complexes
  • 1.4.3. Hydrogen Bonds
  • 1.4.4. The Role of Solvent in Polar Protein-Ligand Interactions
  • 1.4.5. Lipophilic Interactions
  • 1.4.6. Criteria for Strong Protein-Ligand Interactions
  • 1.5. Approaches to Structure-Based Ligand Design
  • 1.5.1. Ligands Derived from Substrate or Natural Ligand
  • 1.5.2. Structures Derived from 3D Database Searches
  • 1.5.3. De Novo Design of Ligands
  • 1.6. Methods and Tools used in Structure-Based Ligand Design
  • 1.7. Outlook and Future Developments
  • References
  • 2. Examples of Active Areas of Structure-Based Design
  • 2.1. Thrombin Inhibitors
  • 2.2. Design of Orally Active Inhibitors of Elastase
  • 2.3. Dorzolamide: A Success Story of Structure-Based Drug Design
  • 2.4. Inhibitors of Serine Esterases
  • 2.4.1. Human Pancreatic Lipase (hPL)
  • 2.4.2. Model of the Trilaurin Triglyceride Substrate Binding
  • 2.4.3. Tetrahydrolipstain (THL)
  • 2.5. Acetylcholinesterase (AChE)
  • 2.5.1. Model of the Acetylcholine Substrate Binding
  • 2.5.2. Physostigmine
  • 2.5.3. Eisai E2020
  • References
  • 3. From Renin to HIV-1 Protease
  • 3.1. Introduction
  • 3.2. Renin
  • 3.2.1. Catalytic Site Binding
  • 3.2.2. Backbone Variations
  • 3.2.3. Subsite Interdependencies
  • 3.2.4. Renin Crystal Structure
  • 3.2.5. Summary--Renin Modeling
  • 3.3. HIV-1 Protease
  • 3.3.1. 3D Structures of HIV-1 Protease
  • 3.3.2. HIV-1 Protease Nonpeptide Inhibitors
  • 3.3.3. Docking/Modeling HIV-1 Protease Nonpeptide Inhibitors
  • 3.4. Summary: Comparison of HIV-1 Protease versus Renin Structure-Based Design
  • 3.5. Current Limitations/Future Perspective
  • 3.6. Conclusion
  • References
  • 4. Zinc Endoproteases: A Structural Superfamily
  • 4.1. Introduction
  • 4.2. Structural Classification of Zinc Endopeptidase Families
  • 4.2.1. Short Spacer or Metzincins Family
  • 4.2.2. Long Spacer or Gluzincins Family
  • 4.3. Overview of Inhibitor Design
  • 4.4. Current Limitations
  • 4.5. Future Prospects
  • References
  • 5. Structure-Based Design of Potent Beta-Lactamase Inhibitors
  • 5.1. Introduction
  • 5.2. Structure of Citrobacter freundii Class C Beta-Lactamase
  • 5.3. Model of the Mechanism of Action: Cleavage of Penicillin G
  • 5.4. Structure of the Complex with Aztreonam
  • 5.5. Design of Inhibitors
  • 5.6. Kinetics of the Inhibition Reaction
  • 5.7. Hydrolysis by Class A Beta-Lactamases
  • 5.8. X-Ray Structure of the Complex with a Bridged Monobactam
  • 5.9. Structure-Activity Relationship among Bridged Monobactams
  • 5.10. Conclusion
  • References
  • 6. Inhibition of Sialidase
  • 6.1. Introduction
  • 6.2. Influenza: Disease and Virus
  • 6.3. Structure of Sialidase
  • 6.4. Mechanism of Catalysis
  • 6.5. Binding of Substrate and Transition State Mimics
  • 6.6. Structure-Based Inhibitor Design
  • 6.7. Enzyme-Inhibitor Interactions
  • 6.8. Inhibitor Potency, Efficacy and Selectivity
  • 6.9. Summary
  • Acknowledgements
  • References
  • 7. Rational Design of Inhibitors of HIV-1 Reverse Transcriptase
  • 7.1. Introduction
  • 7.2. Building a Model
  • 7.3. Test of the Model
  • 7.4. Optimization of Compound 3
  • 7.5. Design of a New Inhibitor
  • 7.6. Guidelines and Conclusions
  • References
  • 8. New Computational Approaches to Predict Protein-Ligand Interactions
  • 8.1. Introduction
  • 8.2. The Computer program LUDI
  • 8.2.1. Basic Methodology
  • 8.2.2. Applications of LUDI
  • 8.3. Computational Methods to Predict Ligand Binding Affinities
  • 8.3.1. A New Scoring Function for Protein-Ligand Complexes
  • 8.4. Current Challenges in Computational De Novo Ligand Design
  • 8.5. Summary
  • References
  • 9. The Future of Structure-Based Design: A Worthy Precept?
  • 9.1. Introduction
  • 9.2. Developments in the Design Process
  • 9.3. Screening Systems
  • 9.4. Future Prospects
  • Acknowledgement
  • References
  • Index