Laser cooling and trapping /

Saved in:
Bibliographic Details
Author / Creator:Metcalf, Harold J.
Imprint:New York : Springer-Verlag, c1999.
Description:xvi, 323 p. : ill. ; 24 cm.
Language:English
Series:Graduate texts in contemporary physics.
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/4049960
Hidden Bibliographic Details
Other authors / contributors:Van der Straten, P.
ISBN:0387987479 (cloth : alk. paper)
0387987282 (pbk. : alk. paper)
Notes:Includes bibliographical references (p. [291]-316) and index.
Table of Contents:
  • Foreword
  • Preface
  • I. Introduction
  • 1. Review of Quantum Mechanics
  • 1.1. Time-Dependent Perturbation Theory
  • 1.2. The Rabi Two-Level Problem
  • 1.2.1. Light Shifts
  • 1.2.2. The Dressed Atom Picture
  • 1.2.3. The Bloch Vector
  • 1.2.4. Adiabatic Rapid Passage
  • 1.3. Excited-State Decay and its Effects
  • 2. The Density Matrix
  • 2.1. Basic Concepts
  • 2.2. Spontaneous Emission
  • 2.3. The Optical Bloch Equations
  • 2.4. Power Broadening and Saturation
  • 3. Force on Two-Level Atoms
  • 3.1. Laser Light Pressure
  • 3.2. A Two-Level Atom at Rest
  • 3.3. Atoms in Motion
  • 3.3.1. Traveling Wave
  • 3.3.2. Standing Wave
  • 4. Multilevel Atoms
  • 4.1. Alkali-Metal Atoms
  • 4.2. Metastable Noble Gas Atoms
  • 4.3. Polarization and Interference
  • 4.4. Angular Momentum and Selection Rules
  • 4.5. Optical Transitions in Multilevel Atoms
  • 4.5.1. Introduction
  • 4.5.2. Radial Part
  • 4.5.3. Angular Part of the Dipole Matrix Element
  • 4.5.4. Fine and Hyperfine Interactions
  • 5. General Properties Concerning Laser Cooling
  • 5.1. Temperature and Thermodynamics in Laser Cooling
  • 5.2. Kinetic Theory and the Maxwell-Boltzmann Distribution
  • 5.3. Random Walks
  • 5.4. The Fokker-Planck Equation and Cooling Limits
  • 5.5. Phase Space and Liouville's Theorem
  • II. Cooling and Trapping
  • 6. Deceleration of an Atomic Beam
  • 6.1. Introduction
  • 6.2. Techniques of Beam Deceleration
  • 6.2.1. Laser Frequency Sweep
  • 6.2.2. Varying the Atomic Frequency: Magnetic Field Case
  • 6.2.3. Varying the Atomic Frequency: Electric Field Case
  • 6.2.4. Varying the Doppler Shift: Diffuse Light
  • 6.2.5. Broadband Light
  • 6.2.6. Rydberg Atoms
  • 6.3. Measurements and Results
  • 6.4. Further Considerations
  • 6.4.1. Cooling During Deceleration
  • 6.4.2. Non-Uniformity of Deceleration
  • 6.4.3. Transverse Motion During Deceleration
  • 6.4.4. Optical Pumping During Deceleration
  • 7. Optical Molasses
  • 7.1. Introduction
  • 7.2. Low-Intensity Theory for a Two-Level Atom in One Dimension
  • 7.3. Atomic Beam Collimation
  • 7.3.1. Low-Intensity Case
  • 7.3.2. Experiments in One and Two Dimensions
  • 7.4. Experiments in Three-Dimensional Optical Molasses
  • 8. Cooling Below the Doppler Limit
  • 8.1. Introduction
  • 8.2. Linear [perpendicular, bottom] Linear Polarization Gradient Cooling
  • 8.2.1. Light Shifts
  • 8.2.2. Origin of the Damping Force
  • 8.3. Magnetically Induced Laser Cooling
  • 8.4. [sigma][superscript +]-[sigma][superscript -] Polarization Gradient Cooling
  • 8.5. Theory of Sub-Doppler Laser Cooling
  • 8.6. Optical Molasses in Three Dimensions
  • 8.7. The Limits of Laser Cooling
  • 8.7.1. The Recoil Limit
  • 8.7.2. Cooling Below the Recoil Limit
  • 8.8. Sisyphus Cooling
  • 8.9. Cooling in a Strong Magnetic Field
  • 8.10. VSR and Polarization Gradients
  • 9. The Dipole Force
  • 9.1. Introduction
  • 9.2. Evanescent Waves
  • 9.3. Dipole Force in a Standing Wave: Optical Molasses at High Intensity
  • 9.4. Atomic Motion Controlled by Two Frequencies
  • 9.4.1. Introduction
  • 9.4.2. Rectification of the Dipole Force
  • 9.4.3. The Bichromatic Force
  • 9.4.4. Beam Collimation and Slowing
  • 10. Magnetic Trapping of Neutral Atoms
  • 10.1. Introduction
  • 10.2. Magnetic Traps
  • 10.3. Classical Motion of Atoms in a Magnetic Quadrupole Trap
  • 10.3.1. Simple Picture of Classical Motion in a Trap
  • 10.3.2. Numerical Calculations of the Orbits
  • 10.3.3. Early Experiments with Classical Motion
  • 10.4. Quantum Motion in a Trap
  • 10.4.1. Heuristic Calculations of the Quantum Motion of Magnetically Trapped Atoms
  • 10.4.2. Three-Dimensional Quantum Calculations
  • 10.4.3. Experiments in the Quantum Domain
  • 11. Optical Traps for Neutral Atoms
  • 11.1. Introduction
  • 11.2. Dipole Force Optical Traps
  • 11.2.1. Single-Beam Optical Traps for Two-Level Atoms
  • 11.2.2. Hybrid Dipole Radiative Trap
  • 11.2.3. Blue Detuned Optical Traps
  • 11.2.4. Microscopic Optical Traps
  • 11.3. Radiation Pressure Traps
  • 11.4. Magneto-Optical Traps
  • 11.4.1. Introduction
  • 11.4.2. Cooling and Compressing Atoms in a MOT
  • 11.4.3. Capturing Atoms in a MOT
  • 11.4.4. Variations on the MOT Technique
  • 12. Evaporative Cooling
  • 12.1. Introduction
  • 12.2. Basic Assumptions
  • 12.3. The Simple Model
  • 12.4. Speed and Limits of Evaporative Cooling
  • 12.4.1. Boltzmann Equation
  • 12.4.2. Speed of Evaporation
  • 12.4.3. Limiting Temperature
  • 12.5. Experimental Results
  • III. Applications
  • 13. Newtonian Atom Optics and its Applications
  • 13.1. Introduction
  • 13.2. Atom Mirrors
  • 13.3. Atom Lenses
  • 13.3.1. Magnetic Lenses
  • 13.3.2. Optical Atom Lenses
  • 13.4. Atomic Fountain
  • 13.5. Application to Atomic Beam Brightening
  • 13.5.1. Introduction
  • 13.5.2. Beam-Brightening Experiments
  • 13.5.3. High-Brightness Metastable Beams
  • 13.6. Application to Nanofabrication
  • 13.7. Applications to Atomic Clocks
  • 13.7.1. Introduction
  • 13.7.2. Atomic Fountain Clocks
  • 13.8. Application to Ion Traps
  • 13.9. Application to Non-Linear Optics
  • 14. Ultra-cold Collisions
  • 14.1. Introduction
  • 14.2. Potential Scattering
  • 14.3. Ground-state Collisions
  • 14.4. Excited-state Collisions
  • 14.4.1. Trap Loss Collisions
  • 14.4.2. Optical Collisions
  • 14.4.3. Photo-Associative Spectroscopy
  • 14.5. Collisions Involving Rydberg States
  • 15. deBroglie Wave Optics
  • 15.1. Introduction
  • 15.2. Gratings
  • 15.3. Beam Splitters
  • 15.4. Sources
  • 15.5. Mirrors
  • 15.6. Atom Polarizers
  • 15.7. Application to Atom Interferometry
  • 16. Optical Lattices
  • 16.1. Introduction
  • 16.2. Laser Arrangements for Optical Lattices
  • 16.3. Quantum States of Motion
  • 16.4. Band Structure in Optical Lattices
  • 16.5. Quantum View of Laser Cooling
  • 17. bose-Einstein Condensation
  • 17.1. Introduction
  • 17.2. The Pathway to BEC
  • 17.3. Experiments
  • 17.3.1. Observation of BEC
  • 17.3.2. First-Order Coherence Experiments in BEC
  • 17.3.3. Higher-Order Coherence Effects in BEC
  • 17.3.4. Other Experiments
  • 18. Dark States
  • 18.1. Introduction
  • 18.2. VSCPT in Two-Level Atoms
  • 18.3. VSCPT in Real Atoms
  • 18.3.1. Circularly Polarized Light
  • 18.3.2. Linearly Polarized Light
  • 18.4. VSCPT at Momenta Higher Than [plus or minus]hk
  • 18.5. VSCPT and Bragg Reflection
  • 18.6. Entangled States
  • IV. Appendices
  • A. Notation and Definitions
  • B. Review Articles and Books on Laser Cooling
  • C. Characteristic Data
  • D. Transition Strengths
  • References
  • Index