Laser cooling and trapping /
Saved in:
Author / Creator: | Metcalf, Harold J. |
---|---|
Imprint: | New York : Springer-Verlag, c1999. |
Description: | xvi, 323 p. : ill. ; 24 cm. |
Language: | English |
Series: | Graduate texts in contemporary physics. |
Subject: | |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/4049960 |
Table of Contents:
- Foreword
- Preface
- I. Introduction
- 1. Review of Quantum Mechanics
- 1.1. Time-Dependent Perturbation Theory
- 1.2. The Rabi Two-Level Problem
- 1.2.1. Light Shifts
- 1.2.2. The Dressed Atom Picture
- 1.2.3. The Bloch Vector
- 1.2.4. Adiabatic Rapid Passage
- 1.3. Excited-State Decay and its Effects
- 2. The Density Matrix
- 2.1. Basic Concepts
- 2.2. Spontaneous Emission
- 2.3. The Optical Bloch Equations
- 2.4. Power Broadening and Saturation
- 3. Force on Two-Level Atoms
- 3.1. Laser Light Pressure
- 3.2. A Two-Level Atom at Rest
- 3.3. Atoms in Motion
- 3.3.1. Traveling Wave
- 3.3.2. Standing Wave
- 4. Multilevel Atoms
- 4.1. Alkali-Metal Atoms
- 4.2. Metastable Noble Gas Atoms
- 4.3. Polarization and Interference
- 4.4. Angular Momentum and Selection Rules
- 4.5. Optical Transitions in Multilevel Atoms
- 4.5.1. Introduction
- 4.5.2. Radial Part
- 4.5.3. Angular Part of the Dipole Matrix Element
- 4.5.4. Fine and Hyperfine Interactions
- 5. General Properties Concerning Laser Cooling
- 5.1. Temperature and Thermodynamics in Laser Cooling
- 5.2. Kinetic Theory and the Maxwell-Boltzmann Distribution
- 5.3. Random Walks
- 5.4. The Fokker-Planck Equation and Cooling Limits
- 5.5. Phase Space and Liouville's Theorem
- II. Cooling and Trapping
- 6. Deceleration of an Atomic Beam
- 6.1. Introduction
- 6.2. Techniques of Beam Deceleration
- 6.2.1. Laser Frequency Sweep
- 6.2.2. Varying the Atomic Frequency: Magnetic Field Case
- 6.2.3. Varying the Atomic Frequency: Electric Field Case
- 6.2.4. Varying the Doppler Shift: Diffuse Light
- 6.2.5. Broadband Light
- 6.2.6. Rydberg Atoms
- 6.3. Measurements and Results
- 6.4. Further Considerations
- 6.4.1. Cooling During Deceleration
- 6.4.2. Non-Uniformity of Deceleration
- 6.4.3. Transverse Motion During Deceleration
- 6.4.4. Optical Pumping During Deceleration
- 7. Optical Molasses
- 7.1. Introduction
- 7.2. Low-Intensity Theory for a Two-Level Atom in One Dimension
- 7.3. Atomic Beam Collimation
- 7.3.1. Low-Intensity Case
- 7.3.2. Experiments in One and Two Dimensions
- 7.4. Experiments in Three-Dimensional Optical Molasses
- 8. Cooling Below the Doppler Limit
- 8.1. Introduction
- 8.2. Linear [perpendicular, bottom] Linear Polarization Gradient Cooling
- 8.2.1. Light Shifts
- 8.2.2. Origin of the Damping Force
- 8.3. Magnetically Induced Laser Cooling
- 8.4. [sigma][superscript +]-[sigma][superscript -] Polarization Gradient Cooling
- 8.5. Theory of Sub-Doppler Laser Cooling
- 8.6. Optical Molasses in Three Dimensions
- 8.7. The Limits of Laser Cooling
- 8.7.1. The Recoil Limit
- 8.7.2. Cooling Below the Recoil Limit
- 8.8. Sisyphus Cooling
- 8.9. Cooling in a Strong Magnetic Field
- 8.10. VSR and Polarization Gradients
- 9. The Dipole Force
- 9.1. Introduction
- 9.2. Evanescent Waves
- 9.3. Dipole Force in a Standing Wave: Optical Molasses at High Intensity
- 9.4. Atomic Motion Controlled by Two Frequencies
- 9.4.1. Introduction
- 9.4.2. Rectification of the Dipole Force
- 9.4.3. The Bichromatic Force
- 9.4.4. Beam Collimation and Slowing
- 10. Magnetic Trapping of Neutral Atoms
- 10.1. Introduction
- 10.2. Magnetic Traps
- 10.3. Classical Motion of Atoms in a Magnetic Quadrupole Trap
- 10.3.1. Simple Picture of Classical Motion in a Trap
- 10.3.2. Numerical Calculations of the Orbits
- 10.3.3. Early Experiments with Classical Motion
- 10.4. Quantum Motion in a Trap
- 10.4.1. Heuristic Calculations of the Quantum Motion of Magnetically Trapped Atoms
- 10.4.2. Three-Dimensional Quantum Calculations
- 10.4.3. Experiments in the Quantum Domain
- 11. Optical Traps for Neutral Atoms
- 11.1. Introduction
- 11.2. Dipole Force Optical Traps
- 11.2.1. Single-Beam Optical Traps for Two-Level Atoms
- 11.2.2. Hybrid Dipole Radiative Trap
- 11.2.3. Blue Detuned Optical Traps
- 11.2.4. Microscopic Optical Traps
- 11.3. Radiation Pressure Traps
- 11.4. Magneto-Optical Traps
- 11.4.1. Introduction
- 11.4.2. Cooling and Compressing Atoms in a MOT
- 11.4.3. Capturing Atoms in a MOT
- 11.4.4. Variations on the MOT Technique
- 12. Evaporative Cooling
- 12.1. Introduction
- 12.2. Basic Assumptions
- 12.3. The Simple Model
- 12.4. Speed and Limits of Evaporative Cooling
- 12.4.1. Boltzmann Equation
- 12.4.2. Speed of Evaporation
- 12.4.3. Limiting Temperature
- 12.5. Experimental Results
- III. Applications
- 13. Newtonian Atom Optics and its Applications
- 13.1. Introduction
- 13.2. Atom Mirrors
- 13.3. Atom Lenses
- 13.3.1. Magnetic Lenses
- 13.3.2. Optical Atom Lenses
- 13.4. Atomic Fountain
- 13.5. Application to Atomic Beam Brightening
- 13.5.1. Introduction
- 13.5.2. Beam-Brightening Experiments
- 13.5.3. High-Brightness Metastable Beams
- 13.6. Application to Nanofabrication
- 13.7. Applications to Atomic Clocks
- 13.7.1. Introduction
- 13.7.2. Atomic Fountain Clocks
- 13.8. Application to Ion Traps
- 13.9. Application to Non-Linear Optics
- 14. Ultra-cold Collisions
- 14.1. Introduction
- 14.2. Potential Scattering
- 14.3. Ground-state Collisions
- 14.4. Excited-state Collisions
- 14.4.1. Trap Loss Collisions
- 14.4.2. Optical Collisions
- 14.4.3. Photo-Associative Spectroscopy
- 14.5. Collisions Involving Rydberg States
- 15. deBroglie Wave Optics
- 15.1. Introduction
- 15.2. Gratings
- 15.3. Beam Splitters
- 15.4. Sources
- 15.5. Mirrors
- 15.6. Atom Polarizers
- 15.7. Application to Atom Interferometry
- 16. Optical Lattices
- 16.1. Introduction
- 16.2. Laser Arrangements for Optical Lattices
- 16.3. Quantum States of Motion
- 16.4. Band Structure in Optical Lattices
- 16.5. Quantum View of Laser Cooling
- 17. bose-Einstein Condensation
- 17.1. Introduction
- 17.2. The Pathway to BEC
- 17.3. Experiments
- 17.3.1. Observation of BEC
- 17.3.2. First-Order Coherence Experiments in BEC
- 17.3.3. Higher-Order Coherence Effects in BEC
- 17.3.4. Other Experiments
- 18. Dark States
- 18.1. Introduction
- 18.2. VSCPT in Two-Level Atoms
- 18.3. VSCPT in Real Atoms
- 18.3.1. Circularly Polarized Light
- 18.3.2. Linearly Polarized Light
- 18.4. VSCPT at Momenta Higher Than [plus or minus]hk
- 18.5. VSCPT and Bragg Reflection
- 18.6. Entangled States
- IV. Appendices
- A. Notation and Definitions
- B. Review Articles and Books on Laser Cooling
- C. Characteristic Data
- D. Transition Strengths
- References
- Index