Condensed matter physics /
Saved in:
Author / Creator: | Marder, Michael P., 1960- |
---|---|
Imprint: | New York : John Wiley & Sons Inc., c2000. |
Description: | xxvi, 895 p. : ill. ; 26 cm. |
Language: | English |
Subject: | |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/4183137 |
Table of Contents:
- Preface
- References
- I. Atomic Structure
- 1. The Idea of Crystals
- 1.1. Introduction
- 1.1.1. Why are Solids Crystalline?
- 1.2. Two-Dimensional Lattices
- 1.2.1. Bravais Lattices
- 1.2.2. Enumeration of Two-Dimensional Bravais Lattices
- 1.2.3. Lattices with Bases
- 1.2.4. Primitive Cells
- 1.2.5. Wigner-Seitz Cells
- 1.3. Symmetries
- 1.3.1. The Space Group
- 1.3.2. Translation and Point Groups
- Problems
- References
- 2. Three-Dimensional Lattices
- 2.1. Introduction
- 2.1.1. Distribution Among Elements
- 2.2. Monatomic Lattices
- 2.2.1. The Simple Cubic Lattice
- 2.2.2. The Face-Centered Cubic Lattice
- 2.2.3. The Body-Centered Cubic Lattice
- 2.2.4. The Hexagonal Lattice
- 2.2.5. The Hexagonal Close-Packed Lattice
- 2.2.6. The Diamond Lattice
- 2.3. Compounds
- 2.3.1. Rocksalt--Sodium Chloride
- 2.3.2. Cesium Chloride
- 2.3.3. Fluorite--Calcium Fluoride
- 2.3.4. Zincblende--Zinc Sulfide
- 2.3.5. Wurtzite--Zinc Oxide
- 2.3.6. Perovskite--Calcium Titanate
- 2.4. Classification of Lattices by Symmetry
- 2.4.1. Fourteen Bravais Lattices and Seven Crystal Systems
- 2.5. Symmetries of Lattices with Bases
- 2.5.1. Thirty-Two Crystallographic Point Groups
- 2.5.2. Two Hundred Thirty Distinct Lattices
- 2.6. Some Macroscopic Implications of Microscopic Symmetries
- 2.6.1. Pyroelectricity
- 2.6.2. Piezoelectricity
- 2.6.3. Optical Activity
- Problems
- References
- 3. Experimental Determination of Crystal Structures
- 3.1. Introduction
- 3.2. Theory of Scattering from Crystals
- 3.2.1. Lattice Sums
- 3.2.2. Reciprocal Lattice
- 3.2.3. Miller Indices
- 3.2.4. Scattering from a Lattice with a Basis
- 3.3. Experimental Methods
- 3.3.1. Laue Method
- 3.3.2. Rotating Crystal Method
- 3.3.3. Powder Method
- 3.4. Further Features of Scattering Experiments
- 3.4.1. Interaction of X-Rays with Matter
- 3.4.2. Production of X-Rays
- 3.4.3. Neutrons
- 3.4.4. Electrons
- 3.4.5. Deciphering Complex Structures
- 3.4.6. Accuracy of Structure Determinations
- Problems
- References
- 4. Surfaces and Interfaces
- 4.1. Introduction
- 4.2. Geometry of Interfaces
- 4.2.1. Coherent and Commensurate Interfaces
- 4.2.2. Stacking Period and Interplanar Spacing
- 4.2.3. Other Topics in Surface Structure
- 4.3. Experimental Observation and Creation of Surfaces
- 4.3.1. Low-Energy Electron Diffraction (LEED)
- 4.3.2. Reflection High-Energy Electron Diffraction (RHEED)
- 4.3.3. Molecular Beam Epitaxy (MBE)
- 4.3.4. Field Ion Microscopy (FIM)
- 4.3.5. Scanning Tunneling Microscopy (STM)
- 4.3.6. Atomic Force Microscopy (AFM)
- 4.3.7. High Resolution Electron Microscopy (HREM)
- Problems
- References
- 5. Complex Structures
- 5.1. Introduction
- 5.2. Alloys
- 5.2.1. Equilibrium Structures
- 5.2.2. Phase Diagrams
- 5.2.3. Superlattices
- 5.2.4. Phase Separation
- 5.2.5. Nonequilibrium Structures in Alloys
- 5.2.6. Dynamics of Phase Separation
- 5.3. Simulations
- 5.3.1. Monte Carlo
- 5.3.2. Molecular Dynamics
- 5.4. Liquids
- 5.4.1. Correlation Functions
- 5.4.2. Extended X-Ray Absorption Fine Structure (EXAFS)
- 5.4.3. Calculating Correlation Functions
- 5.5. Glasses
- 5.6. Liquid Crystals
- 5.6.1. Nematics, Cholesterics, and Smectics
- 5.6.2. Liquid Crystal Order Parameter
- 5.7. Polymers
- 5.7.1. Ideal Radius of Gyration
- 5.8. Quasicrystals
- 5.8.1. One-Dimensional Quasicrystal
- 5.8.2. Two-Dimensional Quasicrystals--Penrose Tiles
- 5.8.3. Experimental Observations
- 5.8.4. Fullerenes
- Problems
- References
- II. Electronic Structure
- 6. The Single-Electron Model
- 6.1. Introduction
- 6.2. The Basic Hamiltonian
- 6.3. Densities of States
- 6.3.1. Definition of Density of States D
- 6.3.2. Results for Free Electrons
- 6.4. Statistical Mechanics of Noninteracting Electrons
- 6.5. Sommerfeld Expansion
- 6.5.1. Specific Heat of Noninteracting Electrons at Low Temperatures
- Problems
- References
- 7. The Schrodinger Equation and Symmetry
- 7.1. Introduction
- 7.2. Translational Symmetry--Bloch's Theorem
- 7.2.1. Van Hove Singularities
- 7.2.2. Fourier Analysis of Bloch's Theorem
- 7.2.3. Kronig-Penney Model
- 7.3. Rotational Symmetry--Group Representations
- 7.3.1. Classes and Characters
- 7.3.2. Consequences of point group symmetries for Schrodinger's equation
- Problems
- References
- 8. Nearly Free and Tightly Bound Electrons
- 8.1. Introduction
- 8.2. Nearly Free Electrons
- 8.2.1. Degenerate Perturbation Theory
- 8.3. Brillouin Zones
- 8.3.1. Nearly Free Electron Fermi Surfaces
- 8.4. Tightly Bound Electrons
- 8.4.1. Wannier Functions
- 8.4.2. Tight Binding Model
- Problems
- References
- 9. Electron-Electron Interaction
- 9.1. Introduction
- 9.2. Hartree and Hartree-Fock Equations
- 9.2.1. Variational Principle
- 9.2.2. Hartree-Fock Equations
- 9.2.3. Numerical Implementation
- 9.2.4. Hartree-Fock Equations for Jellium
- 9.3. Density Functional Theory
- 9.3.1. Thomas-Fermi Theory
- 9.3.2. Kohn-Sham Equations
- 9.4. Stability of Matter
- Problems
- References
- 10. Calculation of Band Structures
- 10.1. Introduction
- 10.2. Numerical Methods
- 10.2.1. Pseudopotentials and Orthogonalized Planes Waves (OPW)
- 10.2.2. Linear Combination of Atomic Orbitals (LCAO)
- 10.2.3. Plane Waves
- 10.2.4. Linear Augmented Plane Waves (LAPW)
- 10.2.5. Linearized Muffin Tin Orbitals (LMTO)
- 10.3. Definition of Metals, Insulators, and Semiconductors
- 10.4. Brief Survey of the Periodic Table
- 10.4.1. Noble Gases
- 10.4.2. Nearly Free Electron Metals
- 10.4.3. Semiconductors
- 10.4.4. Transition Metals
- 10.4.5. Rare Earths
- Problems
- References
- III. Mechanical Properties
- 11. Cohesion of Solids
- 11.1. Introduction
- 11.1.1. Radii of Atoms
- 11.2. Noble Gases
- 11.3. Ionic Crystals
- 11.3.1. Ewald Sums
- 11.4. Metals
- 11.4.1. Use of Pseudopotentials
- 11.5. Band Structure Energy
- 11.5.1. Peierls Distortion
- 11.5.2. Structural Phase Transitions
- 11.6. Hydrogen-Bonded Solids
- 11.7. Cohesive Energy from Band Calculations
- 11.8. Classical Potentials
- Problems
- References
- 12. Elasticity
- 12.1. Introduction
- 12.2. General Theory of Linear Elasticity
- 12.2.1. Solids of Cubic Symmetry
- 12.2.2. Isotropic Solids
- 12.3. Other Constitutive Laws
- 12.3.1. Liquid Crystals
- 12.3.2. Rubber
- 12.3.3. Composite and Granular Materials
- Problems
- References
- 13. Phonons
- 13.1. Introduction
- 13.2. Vibrations of a Classical Lattice
- 13.2.1. Normal Modes
- 13.2.2. Lattice with a Basis
- 13.3. Vibrations of a Quantum-Mechanical Lattice
- 13.3.1. Phonon Specific Heat
- 13.3.2. Einstein and Debye Models
- 13.3.3. Thermal Expansion
- 13.4. Inelastic Scattering from Phonons
- 13.4.1. Neutron Scattering
- 13.4.2. Formal Theory of Neutron Scattering
- 13.4.3. Averaging Exponentials
- 13.4.4. Evaluation of Structure Factor
- 13.4.5. Kohn Anomalies
- 13.5. The Mossbauer Effect
- Problems
- References
- 14. Dislocations and Cracks
- 14.1. Introduction
- 14.2. Dislocations
- 14.2.1. Experimental Observations of Dislocations
- 14.2.2. Force to Move a Dislocation
- 14.2.3. One-Dimensional Dislocations: Frenkel-Kontorova Model
- 14.3. Two-Dimensional Dislocations and Hexatic Phases
- 14.3.1. Impossibility of Crystalline Order in Two Dimensions
- 14.3.2. Orientational Order
- 14.3.3. Kosterlitz-Thouless-Berezinskii Transition
- 14.4. Cracks
- 14.4.1. Fracture of a Strip
- 14.4.2. Stresses Around an Elliptical Hole
- 14.4.3. Stress Intensity Factor
- 14.4.4. Atomic Aspects of Fracture
- Problems
- References
- 15. Fluid Mechanics
- 15.1. Introduction
- 15.2. Newtonian Fluids
- 15.2.1. Euler's Equation
- 15.2.2. Navier-Stokes Equation
- 15.3. Polymeric Solutions
- 15.4. Plasticity
- 15.5. Superfluid [superscript 4]He
- 15.5.1. Two-Fluid Hydrodynamics
- 15.5.2. Second Sound
- 15.5.3. Origin of Superfluidity
- 15.5.4. Lagrangian Theory of Wave Function
- 15.5.5. Superfluid [superscript 3]He
- Problems
- References
- IV. Electron Transport
- 16. Dynamics of Bloch Electrons
- 16.1. Introduction
- 16.1.1. Drude Model
- 16.2. Semiclassical Electron Dynamics
- 16.2.1. Bloch Oscillations
- 16.2.2. k.P Method
- 16.2.3. Effective Mass
- 16.3. Noninteracting Electrons in an Electric Field
- 16.3.1. Zener Tunneling
- 16.4. Semiclassical Equations from Wave Packets
- 16.4.1. Formal Dynamics of Wave Packets
- 16.5. Quantizing Semiclassical Dynamics
- 16.5.1. Wannier-Stark Ladders
- 16.5.2. de Haas-van Alphen Effect
- 16.5.3. Experimental Measurements of Fermi Surfaces
- Problems
- References
- 17. Transport Phenomena and Fermi Liquid Theory
- 17.1. Introduction
- 17.2. Boltzmann Equation
- 17.2.1. Boltzmann Equation
- 17.2.2. Relaxation Time Approximation
- 17.2.3. Relation to Rate of Production of Entropy
- 17.3. Transport Symmetries
- 17.3.1. Onsager Relations
- 17.4. Thermoelectric Phenomena
- 17.4.1. Electrical Current
- 17.4.2. Effective Mass and Holes
- 17.4.3. Mixed Thermal and Electrical Gradients
- 17.4.4. Wiedemann-Franz Law
- 17.4.5. Thermopower--Seebeck Effect
- 17.4.6. Peltier Effect
- 17.4.7. Thomson Effect
- 17.4.8. Hall Effect
- 17.4.9. Magnetoresistance
- 17.4.10. Giant Magnetoresistance
- 17.5. Fermi Liquid Theory
- 17.5.1. Basic Ideas
- 17.5.2. Statistical Mechanics of Quasi-Particles
- 17.5.3. Effective Mass
- 17.5.4. Specific Heat
- 17.5.5. Fermi Liquid Parameters
- 17.5.6. Traveling Waves
- 17.5.7. Comparison with Experiment in [superscript 3]He
- Problems
- References
- 18. Microscopic Theories of Conduction
- 18.1. Introduction
- 18.2. Weak Scattering Theory of Conductivity
- 18.2.1. General Formula for Relaxation Time
- 18.2.2. Matthiessen's Rule
- 18.2.3. Fluctuations
- 18.3. Metal-Insulator Transitions
- 18.3.1. Types of Impurities
- 18.3.2. Impurity Scattering and Green's Functions
- 18.3.3. Green's Functions
- 18.3.4. Single Impurity
- 18.4. Coherent Potential Approximation
- 18.5. Localization
- 18.5.1. Exact Results in One Dimension
- 18.5.2. Scaling Theory of Localization
- 18.5.3. Comparison with Experiment
- Problems
- References
- 19. Electronics
- 19.1. Introduction
- 19.2. Metal Interfaces
- 19.2.1. Work Functions
- 19.2.2. Schottky Barrier
- 19.2.3. Contact Potentials
- 19.3. Semiconductors
- 19.3.1. Pure Semiconductors
- 19.3.2. Semiconductor in Equilibrium
- 19.3.3. Intrinsic Semiconductor
- 19.3.4. Extrinsic Semiconductor
- 19.4. Diodes and Transistors
- 19.4.1. Surface States
- 19.4.2. Semiconductor Junctions
- 19.4.3. Boltzmann Equation for Semiconductors
- 19.4.4. Detailed Theory of Rectification
- 19.4.5. Transistor
- 19.5. Inversion Layers
- 19.5.1. Heterostructures
- 19.5.2. Quantum Point Contact
- 19.5.3. Quantum Dot
- Problems
- References
- V. Optical Properties
- 20. Phenomenological Theory
- 20.1. Introduction
- 20.2. Maxwell's Equations
- 20.2.1. Traveling Waves
- 20.2.2. Mechanical Oscillators as Dielectric Function
- 20.3. Kramers-Kronig Relations
- 20.3.1. Application to Optical Experiments
- 20.4. The Kubo-Greenwood Formula
- 20.4.1. Born Approximation
- 20.4.2. Susceptibility
- 20.4.3. Many-Body Green Functions
- Problems
- References
- 21. Optical Properties of Semiconductors
- 21.1. Introduction
- 21.2. Cyclotron Resonance
- 21.2.1. Electron Energy Surfaces
- 21.3. Semiconductor Band Gaps
- 21.3.1. Direct Transitions
- 21.3.2. Indirect Transitions
- 21.4. Excitons
- 21.4.1. Mott-Wannier Excitons
- 21.4.2. Frenkel Excitons
- 21.4.3. Electron-Hole Liquid
- 21.5. Optoelectronics
- 21.5.1. Solar Cells
- 21.5.2. Lasers
- Problems
- References
- 22. Optical Properties of Insulators
- 22.1. Introduction
- 22.2. Polarization
- 22.2.1. Ferroelectrics
- 22.2.2. Clausius-Mossotti Relation
- 22.3. Optical Modes in Ionic Crystals
- 22.3.1. Polaritons
- 22.3.2. Polarons
- 22.3.3. Experimental Observations of Polarons
- 22.4. Point Defects and Color Centers
- 22.4.1. Vacancies
- 22.4.2. F Centers
- 22.4.3. Electron Spin Resonance and Electron Nuclear Double Resonance
- 22.4.4. Other Centers
- 22.4.5. Franck-Condon Effect
- 22.4.6. Urbach Tails
- Problems
- References
- 23. Optical Properties of Metals and Inelastic Scattering
- 23.1. Introduction
- 23.1.1. Plasma Frequency
- 23.2. Metals at Low Frequencies
- 23.2.1. Anomalous Skin Effect
- 23.3. Plasmons
- 23.3.1. Experimental Observation of Plasmons
- 23.4. Interband Transitions
- 23.5. Brillouin and Raman Scattering
- 23.5.1. Brillouin Scattering
- 23.5.2. Raman Scattering
- 23.5.3. Inelastic X-Ray Scattering
- 23.6. Photoemission
- 23.6.1. Measurement of Work Functions
- 23.6.2. Angle-Resolved Photoemission
- 23.6.3. Core-Level Photoemission and Charge-Transfer Insulators
- Problems
- References
- VI. Magnetism
- 24. Classical Theories of Magnetism and Ordering
- 24.1. Introduction
- 24.2. Three Views of Magnetism
- 24.2.1. From Magnetic Moments
- 24.2.2. From Conductivity
- 24.2.3. From a Free Energy
- 24.3. Magnetic Dipole Moments
- 24.3.1. Spontaneous Magnetization of Ferromagnets
- 24.3.2. Ferrimagnets
- 24.3.3. Antiferromagnets
- 24.4. Mean Field Theory and the Ising Model
- 24.4.1. Domains
- 24.4.2. Hysteresis
- 24.5. Other Order-Disorder Transitions
- 24.5.1. Alloy Superlattices
- 24.5.2. Spin Glasses
- 24.6. Critical Phenomena
- 24.6.1. Landau Free Energy
- 24.6.2. Scaling Theory
- Problems
- References
- 25. Magnetism of Ions and Electrons
- 25.1. Introduction
- 25.2. Atomic Magnetism
- 25.2.1. Hund's Rules
- 25.2.2. Curie's Law
- 25.3. Magnetism of the Free-Electron Gas
- 25.3.1. Pauli Paramagnetism
- 25.3.2. Landau Diamagnetism
- 25.3.3. Aharonov-Bohm Effect
- 25.4. Tightly Bound Electrons in Magnetic Fields
- 25.5. Quantum Hall Effect
- 25.5.1. Integer Quantum Hall Effect
- 25.5.2. Fractional Quantum Hall Effect
- Problems
- References
- 26. Quantum Mechanics of Interacting Magnetic Moments
- 26.1. Introduction
- 26.2. Origin of Ferromagnetism
- 26.2.1. Heitler-London Calculation
- 26.2.2. Spin Hamiltonian
- 26.3. Heisenberg Model
- 26.3.1. Indirect Exchange and Superexchange
- 26.3.2. Ground State
- 26.3.3. Spin Waves
- 26.3.4. Spin Waves in Antiferromagnets
- 26.3.5. Comparison with Experiment
- 26.4. Ferromagnetism in Transition Metals
- 26.4.1. Stoner Model
- 26.4.2. Calculations Within Band Theory
- 26.5. Kondo Effect
- 26.5.1. Scaling Theory
- 26.6. Hubbard Model
- 26.6.1. Mean-Field Solution
- Problems
- References
- 27. Superconductivity
- 27.1. Introduction
- 27.2. Phenomenology of Superconductivity
- 27.2.1. Phenomenological Free Energy
- 27.2.2. Thermodynamics of Superconductors
- 27.2.3. Landau-Ginzburg Free Energy
- 27.2.4. Type I and Type II Superconductors
- 27.2.5. Flux Quantization
- 27.2.6. The Josephson Effect
- 27.2.7. Circuits with Josephson Junction Elements
- 27.2.8. SQUIDS
- 27.2.9. Origin of Josephson's Equations
- 27.3. Microscopic Theory of Superconductivity
- 27.3.1. Electron-Ion Interaction
- 27.3.2. Formal Derivation
- 27.3.3. Instability of the Normal State: Cooper Problem
- 27.3.4. Self-Consistent Ground State
- 27.3.5. Thermodynamics of Superconductors
- 27.3.6. Superconductor in External Magnetic Field
- 27.3.7. Derivation of Meissner Effect
- 27.3.8. Comparison with Experiment
- 27.3.9. High-Temperature Superconductors
- Problems
- References
- Appendices
- A. Lattice Sums and Fourier Transforms
- A.1. One-Dimensional Sum
- A.2. Area Under Peaks
- A.3. Three-Dimensional Sum
- A.4. Discrete Case
- A.5. Convolution
- A.6. Using the Fast Fourier Transform
- References
- B. Variational Techniques
- B.1. Functionals and Functional Derivatives
- B.2. Time-Independent Schrodinger Equation
- B.3. Time-Dependent Schrodinger Equation
- B.4. Method of Steepest Descent
- References
- C. Second Quantization
- C.1. Rules
- C.1.1. States
- C.1.2. Operators
- C.1.3. Hamiltonians
- C.2. Derivations
- C.2.1. Bosons
- C.2.2. Fermions
- Index