Condensed matter physics /

Saved in:
Bibliographic Details
Author / Creator:Marder, Michael P., 1960-
Imprint:New York : John Wiley & Sons Inc., c2000.
Description:xxvi, 895 p. : ill. ; 26 cm.
Language:English
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/4183137
Hidden Bibliographic Details
ISBN:0471177792 (alk. paper)
Notes:Includes bibliographical references and index.
Table of Contents:
  • Preface
  • References
  • I. Atomic Structure
  • 1. The Idea of Crystals
  • 1.1. Introduction
  • 1.1.1. Why are Solids Crystalline?
  • 1.2. Two-Dimensional Lattices
  • 1.2.1. Bravais Lattices
  • 1.2.2. Enumeration of Two-Dimensional Bravais Lattices
  • 1.2.3. Lattices with Bases
  • 1.2.4. Primitive Cells
  • 1.2.5. Wigner-Seitz Cells
  • 1.3. Symmetries
  • 1.3.1. The Space Group
  • 1.3.2. Translation and Point Groups
  • Problems
  • References
  • 2. Three-Dimensional Lattices
  • 2.1. Introduction
  • 2.1.1. Distribution Among Elements
  • 2.2. Monatomic Lattices
  • 2.2.1. The Simple Cubic Lattice
  • 2.2.2. The Face-Centered Cubic Lattice
  • 2.2.3. The Body-Centered Cubic Lattice
  • 2.2.4. The Hexagonal Lattice
  • 2.2.5. The Hexagonal Close-Packed Lattice
  • 2.2.6. The Diamond Lattice
  • 2.3. Compounds
  • 2.3.1. Rocksalt--Sodium Chloride
  • 2.3.2. Cesium Chloride
  • 2.3.3. Fluorite--Calcium Fluoride
  • 2.3.4. Zincblende--Zinc Sulfide
  • 2.3.5. Wurtzite--Zinc Oxide
  • 2.3.6. Perovskite--Calcium Titanate
  • 2.4. Classification of Lattices by Symmetry
  • 2.4.1. Fourteen Bravais Lattices and Seven Crystal Systems
  • 2.5. Symmetries of Lattices with Bases
  • 2.5.1. Thirty-Two Crystallographic Point Groups
  • 2.5.2. Two Hundred Thirty Distinct Lattices
  • 2.6. Some Macroscopic Implications of Microscopic Symmetries
  • 2.6.1. Pyroelectricity
  • 2.6.2. Piezoelectricity
  • 2.6.3. Optical Activity
  • Problems
  • References
  • 3. Experimental Determination of Crystal Structures
  • 3.1. Introduction
  • 3.2. Theory of Scattering from Crystals
  • 3.2.1. Lattice Sums
  • 3.2.2. Reciprocal Lattice
  • 3.2.3. Miller Indices
  • 3.2.4. Scattering from a Lattice with a Basis
  • 3.3. Experimental Methods
  • 3.3.1. Laue Method
  • 3.3.2. Rotating Crystal Method
  • 3.3.3. Powder Method
  • 3.4. Further Features of Scattering Experiments
  • 3.4.1. Interaction of X-Rays with Matter
  • 3.4.2. Production of X-Rays
  • 3.4.3. Neutrons
  • 3.4.4. Electrons
  • 3.4.5. Deciphering Complex Structures
  • 3.4.6. Accuracy of Structure Determinations
  • Problems
  • References
  • 4. Surfaces and Interfaces
  • 4.1. Introduction
  • 4.2. Geometry of Interfaces
  • 4.2.1. Coherent and Commensurate Interfaces
  • 4.2.2. Stacking Period and Interplanar Spacing
  • 4.2.3. Other Topics in Surface Structure
  • 4.3. Experimental Observation and Creation of Surfaces
  • 4.3.1. Low-Energy Electron Diffraction (LEED)
  • 4.3.2. Reflection High-Energy Electron Diffraction (RHEED)
  • 4.3.3. Molecular Beam Epitaxy (MBE)
  • 4.3.4. Field Ion Microscopy (FIM)
  • 4.3.5. Scanning Tunneling Microscopy (STM)
  • 4.3.6. Atomic Force Microscopy (AFM)
  • 4.3.7. High Resolution Electron Microscopy (HREM)
  • Problems
  • References
  • 5. Complex Structures
  • 5.1. Introduction
  • 5.2. Alloys
  • 5.2.1. Equilibrium Structures
  • 5.2.2. Phase Diagrams
  • 5.2.3. Superlattices
  • 5.2.4. Phase Separation
  • 5.2.5. Nonequilibrium Structures in Alloys
  • 5.2.6. Dynamics of Phase Separation
  • 5.3. Simulations
  • 5.3.1. Monte Carlo
  • 5.3.2. Molecular Dynamics
  • 5.4. Liquids
  • 5.4.1. Correlation Functions
  • 5.4.2. Extended X-Ray Absorption Fine Structure (EXAFS)
  • 5.4.3. Calculating Correlation Functions
  • 5.5. Glasses
  • 5.6. Liquid Crystals
  • 5.6.1. Nematics, Cholesterics, and Smectics
  • 5.6.2. Liquid Crystal Order Parameter
  • 5.7. Polymers
  • 5.7.1. Ideal Radius of Gyration
  • 5.8. Quasicrystals
  • 5.8.1. One-Dimensional Quasicrystal
  • 5.8.2. Two-Dimensional Quasicrystals--Penrose Tiles
  • 5.8.3. Experimental Observations
  • 5.8.4. Fullerenes
  • Problems
  • References
  • II. Electronic Structure
  • 6. The Single-Electron Model
  • 6.1. Introduction
  • 6.2. The Basic Hamiltonian
  • 6.3. Densities of States
  • 6.3.1. Definition of Density of States D
  • 6.3.2. Results for Free Electrons
  • 6.4. Statistical Mechanics of Noninteracting Electrons
  • 6.5. Sommerfeld Expansion
  • 6.5.1. Specific Heat of Noninteracting Electrons at Low Temperatures
  • Problems
  • References
  • 7. The Schrodinger Equation and Symmetry
  • 7.1. Introduction
  • 7.2. Translational Symmetry--Bloch's Theorem
  • 7.2.1. Van Hove Singularities
  • 7.2.2. Fourier Analysis of Bloch's Theorem
  • 7.2.3. Kronig-Penney Model
  • 7.3. Rotational Symmetry--Group Representations
  • 7.3.1. Classes and Characters
  • 7.3.2. Consequences of point group symmetries for Schrodinger's equation
  • Problems
  • References
  • 8. Nearly Free and Tightly Bound Electrons
  • 8.1. Introduction
  • 8.2. Nearly Free Electrons
  • 8.2.1. Degenerate Perturbation Theory
  • 8.3. Brillouin Zones
  • 8.3.1. Nearly Free Electron Fermi Surfaces
  • 8.4. Tightly Bound Electrons
  • 8.4.1. Wannier Functions
  • 8.4.2. Tight Binding Model
  • Problems
  • References
  • 9. Electron-Electron Interaction
  • 9.1. Introduction
  • 9.2. Hartree and Hartree-Fock Equations
  • 9.2.1. Variational Principle
  • 9.2.2. Hartree-Fock Equations
  • 9.2.3. Numerical Implementation
  • 9.2.4. Hartree-Fock Equations for Jellium
  • 9.3. Density Functional Theory
  • 9.3.1. Thomas-Fermi Theory
  • 9.3.2. Kohn-Sham Equations
  • 9.4. Stability of Matter
  • Problems
  • References
  • 10. Calculation of Band Structures
  • 10.1. Introduction
  • 10.2. Numerical Methods
  • 10.2.1. Pseudopotentials and Orthogonalized Planes Waves (OPW)
  • 10.2.2. Linear Combination of Atomic Orbitals (LCAO)
  • 10.2.3. Plane Waves
  • 10.2.4. Linear Augmented Plane Waves (LAPW)
  • 10.2.5. Linearized Muffin Tin Orbitals (LMTO)
  • 10.3. Definition of Metals, Insulators, and Semiconductors
  • 10.4. Brief Survey of the Periodic Table
  • 10.4.1. Noble Gases
  • 10.4.2. Nearly Free Electron Metals
  • 10.4.3. Semiconductors
  • 10.4.4. Transition Metals
  • 10.4.5. Rare Earths
  • Problems
  • References
  • III. Mechanical Properties
  • 11. Cohesion of Solids
  • 11.1. Introduction
  • 11.1.1. Radii of Atoms
  • 11.2. Noble Gases
  • 11.3. Ionic Crystals
  • 11.3.1. Ewald Sums
  • 11.4. Metals
  • 11.4.1. Use of Pseudopotentials
  • 11.5. Band Structure Energy
  • 11.5.1. Peierls Distortion
  • 11.5.2. Structural Phase Transitions
  • 11.6. Hydrogen-Bonded Solids
  • 11.7. Cohesive Energy from Band Calculations
  • 11.8. Classical Potentials
  • Problems
  • References
  • 12. Elasticity
  • 12.1. Introduction
  • 12.2. General Theory of Linear Elasticity
  • 12.2.1. Solids of Cubic Symmetry
  • 12.2.2. Isotropic Solids
  • 12.3. Other Constitutive Laws
  • 12.3.1. Liquid Crystals
  • 12.3.2. Rubber
  • 12.3.3. Composite and Granular Materials
  • Problems
  • References
  • 13. Phonons
  • 13.1. Introduction
  • 13.2. Vibrations of a Classical Lattice
  • 13.2.1. Normal Modes
  • 13.2.2. Lattice with a Basis
  • 13.3. Vibrations of a Quantum-Mechanical Lattice
  • 13.3.1. Phonon Specific Heat
  • 13.3.2. Einstein and Debye Models
  • 13.3.3. Thermal Expansion
  • 13.4. Inelastic Scattering from Phonons
  • 13.4.1. Neutron Scattering
  • 13.4.2. Formal Theory of Neutron Scattering
  • 13.4.3. Averaging Exponentials
  • 13.4.4. Evaluation of Structure Factor
  • 13.4.5. Kohn Anomalies
  • 13.5. The Mossbauer Effect
  • Problems
  • References
  • 14. Dislocations and Cracks
  • 14.1. Introduction
  • 14.2. Dislocations
  • 14.2.1. Experimental Observations of Dislocations
  • 14.2.2. Force to Move a Dislocation
  • 14.2.3. One-Dimensional Dislocations: Frenkel-Kontorova Model
  • 14.3. Two-Dimensional Dislocations and Hexatic Phases
  • 14.3.1. Impossibility of Crystalline Order in Two Dimensions
  • 14.3.2. Orientational Order
  • 14.3.3. Kosterlitz-Thouless-Berezinskii Transition
  • 14.4. Cracks
  • 14.4.1. Fracture of a Strip
  • 14.4.2. Stresses Around an Elliptical Hole
  • 14.4.3. Stress Intensity Factor
  • 14.4.4. Atomic Aspects of Fracture
  • Problems
  • References
  • 15. Fluid Mechanics
  • 15.1. Introduction
  • 15.2. Newtonian Fluids
  • 15.2.1. Euler's Equation
  • 15.2.2. Navier-Stokes Equation
  • 15.3. Polymeric Solutions
  • 15.4. Plasticity
  • 15.5. Superfluid [superscript 4]He
  • 15.5.1. Two-Fluid Hydrodynamics
  • 15.5.2. Second Sound
  • 15.5.3. Origin of Superfluidity
  • 15.5.4. Lagrangian Theory of Wave Function
  • 15.5.5. Superfluid [superscript 3]He
  • Problems
  • References
  • IV. Electron Transport
  • 16. Dynamics of Bloch Electrons
  • 16.1. Introduction
  • 16.1.1. Drude Model
  • 16.2. Semiclassical Electron Dynamics
  • 16.2.1. Bloch Oscillations
  • 16.2.2. k.P Method
  • 16.2.3. Effective Mass
  • 16.3. Noninteracting Electrons in an Electric Field
  • 16.3.1. Zener Tunneling
  • 16.4. Semiclassical Equations from Wave Packets
  • 16.4.1. Formal Dynamics of Wave Packets
  • 16.5. Quantizing Semiclassical Dynamics
  • 16.5.1. Wannier-Stark Ladders
  • 16.5.2. de Haas-van Alphen Effect
  • 16.5.3. Experimental Measurements of Fermi Surfaces
  • Problems
  • References
  • 17. Transport Phenomena and Fermi Liquid Theory
  • 17.1. Introduction
  • 17.2. Boltzmann Equation
  • 17.2.1. Boltzmann Equation
  • 17.2.2. Relaxation Time Approximation
  • 17.2.3. Relation to Rate of Production of Entropy
  • 17.3. Transport Symmetries
  • 17.3.1. Onsager Relations
  • 17.4. Thermoelectric Phenomena
  • 17.4.1. Electrical Current
  • 17.4.2. Effective Mass and Holes
  • 17.4.3. Mixed Thermal and Electrical Gradients
  • 17.4.4. Wiedemann-Franz Law
  • 17.4.5. Thermopower--Seebeck Effect
  • 17.4.6. Peltier Effect
  • 17.4.7. Thomson Effect
  • 17.4.8. Hall Effect
  • 17.4.9. Magnetoresistance
  • 17.4.10. Giant Magnetoresistance
  • 17.5. Fermi Liquid Theory
  • 17.5.1. Basic Ideas
  • 17.5.2. Statistical Mechanics of Quasi-Particles
  • 17.5.3. Effective Mass
  • 17.5.4. Specific Heat
  • 17.5.5. Fermi Liquid Parameters
  • 17.5.6. Traveling Waves
  • 17.5.7. Comparison with Experiment in [superscript 3]He
  • Problems
  • References
  • 18. Microscopic Theories of Conduction
  • 18.1. Introduction
  • 18.2. Weak Scattering Theory of Conductivity
  • 18.2.1. General Formula for Relaxation Time
  • 18.2.2. Matthiessen's Rule
  • 18.2.3. Fluctuations
  • 18.3. Metal-Insulator Transitions
  • 18.3.1. Types of Impurities
  • 18.3.2. Impurity Scattering and Green's Functions
  • 18.3.3. Green's Functions
  • 18.3.4. Single Impurity
  • 18.4. Coherent Potential Approximation
  • 18.5. Localization
  • 18.5.1. Exact Results in One Dimension
  • 18.5.2. Scaling Theory of Localization
  • 18.5.3. Comparison with Experiment
  • Problems
  • References
  • 19. Electronics
  • 19.1. Introduction
  • 19.2. Metal Interfaces
  • 19.2.1. Work Functions
  • 19.2.2. Schottky Barrier
  • 19.2.3. Contact Potentials
  • 19.3. Semiconductors
  • 19.3.1. Pure Semiconductors
  • 19.3.2. Semiconductor in Equilibrium
  • 19.3.3. Intrinsic Semiconductor
  • 19.3.4. Extrinsic Semiconductor
  • 19.4. Diodes and Transistors
  • 19.4.1. Surface States
  • 19.4.2. Semiconductor Junctions
  • 19.4.3. Boltzmann Equation for Semiconductors
  • 19.4.4. Detailed Theory of Rectification
  • 19.4.5. Transistor
  • 19.5. Inversion Layers
  • 19.5.1. Heterostructures
  • 19.5.2. Quantum Point Contact
  • 19.5.3. Quantum Dot
  • Problems
  • References
  • V. Optical Properties
  • 20. Phenomenological Theory
  • 20.1. Introduction
  • 20.2. Maxwell's Equations
  • 20.2.1. Traveling Waves
  • 20.2.2. Mechanical Oscillators as Dielectric Function
  • 20.3. Kramers-Kronig Relations
  • 20.3.1. Application to Optical Experiments
  • 20.4. The Kubo-Greenwood Formula
  • 20.4.1. Born Approximation
  • 20.4.2. Susceptibility
  • 20.4.3. Many-Body Green Functions
  • Problems
  • References
  • 21. Optical Properties of Semiconductors
  • 21.1. Introduction
  • 21.2. Cyclotron Resonance
  • 21.2.1. Electron Energy Surfaces
  • 21.3. Semiconductor Band Gaps
  • 21.3.1. Direct Transitions
  • 21.3.2. Indirect Transitions
  • 21.4. Excitons
  • 21.4.1. Mott-Wannier Excitons
  • 21.4.2. Frenkel Excitons
  • 21.4.3. Electron-Hole Liquid
  • 21.5. Optoelectronics
  • 21.5.1. Solar Cells
  • 21.5.2. Lasers
  • Problems
  • References
  • 22. Optical Properties of Insulators
  • 22.1. Introduction
  • 22.2. Polarization
  • 22.2.1. Ferroelectrics
  • 22.2.2. Clausius-Mossotti Relation
  • 22.3. Optical Modes in Ionic Crystals
  • 22.3.1. Polaritons
  • 22.3.2. Polarons
  • 22.3.3. Experimental Observations of Polarons
  • 22.4. Point Defects and Color Centers
  • 22.4.1. Vacancies
  • 22.4.2. F Centers
  • 22.4.3. Electron Spin Resonance and Electron Nuclear Double Resonance
  • 22.4.4. Other Centers
  • 22.4.5. Franck-Condon Effect
  • 22.4.6. Urbach Tails
  • Problems
  • References
  • 23. Optical Properties of Metals and Inelastic Scattering
  • 23.1. Introduction
  • 23.1.1. Plasma Frequency
  • 23.2. Metals at Low Frequencies
  • 23.2.1. Anomalous Skin Effect
  • 23.3. Plasmons
  • 23.3.1. Experimental Observation of Plasmons
  • 23.4. Interband Transitions
  • 23.5. Brillouin and Raman Scattering
  • 23.5.1. Brillouin Scattering
  • 23.5.2. Raman Scattering
  • 23.5.3. Inelastic X-Ray Scattering
  • 23.6. Photoemission
  • 23.6.1. Measurement of Work Functions
  • 23.6.2. Angle-Resolved Photoemission
  • 23.6.3. Core-Level Photoemission and Charge-Transfer Insulators
  • Problems
  • References
  • VI. Magnetism
  • 24. Classical Theories of Magnetism and Ordering
  • 24.1. Introduction
  • 24.2. Three Views of Magnetism
  • 24.2.1. From Magnetic Moments
  • 24.2.2. From Conductivity
  • 24.2.3. From a Free Energy
  • 24.3. Magnetic Dipole Moments
  • 24.3.1. Spontaneous Magnetization of Ferromagnets
  • 24.3.2. Ferrimagnets
  • 24.3.3. Antiferromagnets
  • 24.4. Mean Field Theory and the Ising Model
  • 24.4.1. Domains
  • 24.4.2. Hysteresis
  • 24.5. Other Order-Disorder Transitions
  • 24.5.1. Alloy Superlattices
  • 24.5.2. Spin Glasses
  • 24.6. Critical Phenomena
  • 24.6.1. Landau Free Energy
  • 24.6.2. Scaling Theory
  • Problems
  • References
  • 25. Magnetism of Ions and Electrons
  • 25.1. Introduction
  • 25.2. Atomic Magnetism
  • 25.2.1. Hund's Rules
  • 25.2.2. Curie's Law
  • 25.3. Magnetism of the Free-Electron Gas
  • 25.3.1. Pauli Paramagnetism
  • 25.3.2. Landau Diamagnetism
  • 25.3.3. Aharonov-Bohm Effect
  • 25.4. Tightly Bound Electrons in Magnetic Fields
  • 25.5. Quantum Hall Effect
  • 25.5.1. Integer Quantum Hall Effect
  • 25.5.2. Fractional Quantum Hall Effect
  • Problems
  • References
  • 26. Quantum Mechanics of Interacting Magnetic Moments
  • 26.1. Introduction
  • 26.2. Origin of Ferromagnetism
  • 26.2.1. Heitler-London Calculation
  • 26.2.2. Spin Hamiltonian
  • 26.3. Heisenberg Model
  • 26.3.1. Indirect Exchange and Superexchange
  • 26.3.2. Ground State
  • 26.3.3. Spin Waves
  • 26.3.4. Spin Waves in Antiferromagnets
  • 26.3.5. Comparison with Experiment
  • 26.4. Ferromagnetism in Transition Metals
  • 26.4.1. Stoner Model
  • 26.4.2. Calculations Within Band Theory
  • 26.5. Kondo Effect
  • 26.5.1. Scaling Theory
  • 26.6. Hubbard Model
  • 26.6.1. Mean-Field Solution
  • Problems
  • References
  • 27. Superconductivity
  • 27.1. Introduction
  • 27.2. Phenomenology of Superconductivity
  • 27.2.1. Phenomenological Free Energy
  • 27.2.2. Thermodynamics of Superconductors
  • 27.2.3. Landau-Ginzburg Free Energy
  • 27.2.4. Type I and Type II Superconductors
  • 27.2.5. Flux Quantization
  • 27.2.6. The Josephson Effect
  • 27.2.7. Circuits with Josephson Junction Elements
  • 27.2.8. SQUIDS
  • 27.2.9. Origin of Josephson's Equations
  • 27.3. Microscopic Theory of Superconductivity
  • 27.3.1. Electron-Ion Interaction
  • 27.3.2. Formal Derivation
  • 27.3.3. Instability of the Normal State: Cooper Problem
  • 27.3.4. Self-Consistent Ground State
  • 27.3.5. Thermodynamics of Superconductors
  • 27.3.6. Superconductor in External Magnetic Field
  • 27.3.7. Derivation of Meissner Effect
  • 27.3.8. Comparison with Experiment
  • 27.3.9. High-Temperature Superconductors
  • Problems
  • References
  • Appendices
  • A. Lattice Sums and Fourier Transforms
  • A.1. One-Dimensional Sum
  • A.2. Area Under Peaks
  • A.3. Three-Dimensional Sum
  • A.4. Discrete Case
  • A.5. Convolution
  • A.6. Using the Fast Fourier Transform
  • References
  • B. Variational Techniques
  • B.1. Functionals and Functional Derivatives
  • B.2. Time-Independent Schrodinger Equation
  • B.3. Time-Dependent Schrodinger Equation
  • B.4. Method of Steepest Descent
  • References
  • C. Second Quantization
  • C.1. Rules
  • C.1.1. States
  • C.1.2. Operators
  • C.1.3. Hamiltonians
  • C.2. Derivations
  • C.2.1. Bosons
  • C.2.2. Fermions
  • Index