Theory of structure transformation in non-equilibrium condensed matter /

Saved in:
Bibliographic Details
Author / Creator:Olemskoi, A.
Imprint:Commack, N.Y. : Nova Science Publishers, c1999.
Description:xvi, 285 p. : ill. ; 27 cm.
Language:English
Series:Horizons in world physics ; vol. 231
Horizons in world physics ; v. 231.
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/4216451
Hidden Bibliographic Details
ISBN:1560727322
Notes:Includes bibliographical references (p. [275]-280) and index.
Table of Contents:
  • Preface
  • 1. Phase Transitions
  • 1.1. Fundamental Principles of the Phase Transition Theory
  • 1.1.1. Phenomenological Theory
  • 1.1.2. Correlation Functions and Susceptibilities
  • 1.1.3. Microscopic Theory
  • 1.1.4. Theory of Ergodicity Breaking
  • 1.2. Self-Consistent Theory of Anderson Transition
  • 1.3. Synergetic Theory of Kinetic Transition of the Dissipative System
  • 1.3.1. Supersymmetrical Field Theory
  • 1.3.2. [phi superscript 4]-Supertheory of Kinetic Transition
  • 1.3.3. Description of Nonequilibrium Nonergodic System
  • 1.4. Theory of Amorphous State of the Condensed Matter
  • 1.4.1. Qualitative Picture of Liquid-Glass Transition
  • 1.4.2. Microscopic Theory of Metal Solution Glassing
  • 1.4.3. Kinetic Theory of Liquid Glassing
  • 2. Theory of Condensed Matter Structure Rearrangement
  • 2.1. Conception of Rearrangable Potential Relief
  • 2.2. Phonon Spectrum Rearrangement under Intensive External Influence
  • 2.3. Synergetic Model of Condensed State Rearrangement
  • 2.3.1. Phenomenological Theory
  • 2.3.2. Microscopic Theory
  • 2.4. Field Theory of Condensed Matter Visco-elastic Behaviour
  • 3. Defects of Crystal Structure
  • 3.1. Dynamics of the Formation of a Structural Level
  • 3.2. Spatial Structure of a Nucleating Level
  • 3.2.1. General Scheme of the Field Theory of the Crystal Defects
  • 3.2.2. Description of Disclination and Dislocation
  • 3.2.3. Non-Abelian Group. Point Defect
  • 3.3. Spatial-Time behaviour of a Steady-State Ensemble of Structural Units
  • 3.4. Description of the Hierarchical Multilevel Defect Structure
  • 3.4.1. Formation of the Hierarchical Structure of Defects
  • 3.4.2. Stochastic Theory of the Hierarchical Defect Structure
  • 3.4.3. Phenomenological Theory of a Hierarchical Defect Structure Relaxation
  • 3.4.4. Microscopic Theory of a Hierarchical Defect Structure
  • 4. Synergetics of the New Phase Macrostructure Evolution
  • 4.1. Formation and Evolution of New Phase
  • 4.1.1. Spinodal Decomposition
  • 4.1.2. Binodal Decomposition
  • 4.2. Nonergodic Theory of the Transition from Spinodal to Heterophase Kinetics
  • 4.2.1. Self-Consistent Representation of the Nonergodic System
  • 4.2.2. Comparison of Nonergodic Theory with Other Approaches
  • 4.3. Influence of Current Stochasticity on the Coalescence Process
  • 4.3.1. Synergetic Formulation of the Coalescence Problem
  • 4.3.2. Qualitative Picture of Coalescence in Fluctuating Current
  • 5. The Supersymmetric Theory of Time-Spatial Evolution
  • 5.1. Supersymmetric representation of order parameter fluctuations
  • 5.2. The supersymmetric theory of phase transition
  • 5.3. Supersymmetric effects at coalescence process
  • 5.4. Supersymmetry of strongly nonequilibrium thermodynamic system
  • 5.4.1. Linear approximation
  • 5.4.2. The supersymmetric diagram technique of the [phi superscript 4]-model
  • 5.4.3. The self-consistent [phi superscript 4]-theory
  • 6. Theory of stochastic systems with singular multiplicative noise
  • 6.1. Methods of description of stochastic systems
  • 6.1.1. Stochastic equation of motion
  • 6.1.2. Solution of the stochastic equation of motion
  • 6.1.3. Field representation of a stochastic system
  • 6.1.4. Fokker-Planck equation
  • 6.1.5. Solution of the Fokker-Planck equation
  • 6.2. Description of a stochastic system with singular multiplicative noise
  • 6.2.1. Gauging the probability distribution of a stochastic system
  • 6.2.2. Phase transitions in a stochastic system
  • 6.2.3. Fractal nature of phase space
  • 6.3. Symmetry and ergodicity breaking in stochastic systems with interparticle interaction
  • 6.3.1. Inclusion of the interparticle interaction in the description of a stochastic system
  • 6.3.2. Theory of a stochastic system with broken symmetry
  • 6.3.3. Theory of a nonergodic stochastic system
  • 6.3.4. Linkage of the fractal nature of the phase space with the behaviour of a stochastic system
  • 6.4. Effects of noise on the behaviour of a synergetic system
  • 6.4.1. Lorenz stochastic system
  • 6.4.2. Synergetic transition in the case of additive noise
  • 6.4.3. Synergetic transition in the case of multiplicative noise
  • References
  • Index