Applied mixed models in medicine /
Saved in:
Author / Creator: | Brown, Helen. |
---|---|
Imprint: | Chichester ; New York : J. Wiley, c1999. |
Description: | xx, 408 p. : ill. ; 24 cm. |
Language: | English |
Series: | Statistics in practice Statistics in practice) |
Subject: | |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/4217302 |
Table of Contents:
- Preface to Second Edition
- Mixed Model Notations
- 1. Introduction
- 1.1. The Use of Mixed Models
- 1.2. Introductory Example
- 1.2.1. Simple model to assess the effects of treatment (Model A)
- 1.2.2. A model taking patient effects into account (Model B)
- 1.2.3. Random effects model (Model C)
- 1.2.4. Estimation (or prediction) of random effects
- 1.3. A Multi-Centre Hypertension Trial
- 1.3.1. Modelling the data
- 1.3.2. Including a baseline covariate (Model B)
- 1.3.3. Modelling centre effects (Model C)
- 1.3.4. Including centre-by-treatment interaction effects (Model D)
- 1.3.5. Modelling centre and centre-treatment effects as random (Model E)
- 1.4. Repeated Measures Data
- 1.4.1. Covariance pattern models
- 1.4.2. Random coefficients models
- 1.5. More about Mixed Models
- 1.5.1. What is a mixed model
- 1.5.2. Why use mixed models
- 1.5.3. Communicating results
- 1.5.4. Mixed models in medicine
- 1.5.5. Mixed models in perspective
- 1.6. Some Useful Definitions
- 1.6.1. Containment
- 1.6.2. Balance
- 1.6.3. Error strata
- 2. Normal Mixed Models
- 2.1. Model Definition
- 2.1.1. The fixed effects model
- 2.1.2. The mixed model
- 2.1.3. The random effects model covariance structure
- 2.1.4. The random coefficients model covariance structure
- 2.1.5. The covariance pattern model covariance structure
- 2.2. Model Fitting Methods
- 2.2.1. The likelihood function and approaches to its maximisation
- 2.2.2. Estimation of fixed effects
- 2.2.3. Estimation (or prediction) of random effects and coefficients
- 2.2.4. Estimation of variance parameters
- 2.3. The Bayesian Approach
- 2.3.1. Introduction
- 2.3.2. Determining the posterior density
- 2.3.3. Parameter estimation, probability intervals and p-values
- 2.3.4. Specifying non-informative prior distributions
- 2.3.5. Evaluating the posterior distribution
- 2.4. Practical Application and Interpretation
- 2.4.1. Negative variance components
- 2.4.2. Accuracy of variance parameters
- 2.4.3. Bias in fixed and random effects standard errors
- 2.4.4. Significance testing
- 2.4.5. Confidence intervals
- 2.4.6. Model checking
- 2.4.7. Missing data
- 2.5. Example
- 2.5.1. Analysis models
- 2.5.2. Results
- 2.5.3. Discussion of points from Section 2.4
- 3. Generalised Linear Mixed Models
- 3.1. Generalised Linear Models
- 3.1.1. Introduction
- 3.1.2. Distributions
- 3.1.3. The general form for exponential distributions
- 3.1.4. The GLM definition
- 3.1.5. Fitting the GLM
- 3.1.6. Expressing individual distributions in the general exponential form
- 3.1.7. Conditional logistic regression
- 3.2. Generalised Linear Mixed Models
- 3.2.1. The GLMM definition
- 3.2.2. The likelihood and quasi-likelihood functions
- 3.2.3. Fitting the GLMM
- 3.3. Practical Application and Interpretation
- 3.3.1. Specifying binary data
- 3.3.2. Uniform effects categories
- 3.3.3. Negative variance components
- 3.3.4. Fixed and random effects estimates
- 3.3.5. Accuracy of variance parameters and random effects shrinkage
- 3.3.6. Bias in fixed and random effects standard errors
- 3.3.7. The dispersion parameter
- 3.3.8. Significance testing
- 3.3.9. Confidence intervals
- 3.3.10. Model checking
- 3.4. Example
- 3.4.1. Introduction and models fitted
- 3.4.2. Results
- 3.4.3. Discussion of points from Section 3.3
- 4. Mixed Models for Categorical Data
- 4.1. Ordinal Logistic Regression (Fixed Effects Model)
- 4.2. Mixed Ordinal Logistic Regression
- 4.2.1. Definition of the mixed ordinal logistic regression model
- 4.2.2. Residual variance matrix
- 4.2.3. Alternative specification for random effects models
- 4.2.4. Likelihood and quasi-likelihood functions
- 4.2.5. Model fitting methods
- 4.3. Mixed Models for Unordered Categorical Data
- 4.3.1. The G matrix
- 4.3.2. The R matrix
- 4.3.3. Fitting the model
- 4.4. Practical Application and Interpretation
- 4.4.1. Expressing fixed and random effects results
- 4.4.2. The proportional odds assumption
- 4.4.3. Number of covariance parameters
- 4.4.4. Choosing a covariance pattern
- 4.4.5. Interpreting covariance parameters
- 4.4.6. Checking model assumptions
- 4.4.7. The dispersion parameter
- 4.4.8. Other points
- 4.5. Example
- 5. Multi-Centre Trials and Meta-Analyses
- 5.1. Introduction to Multi-Centre Trials
- 5.1.1. What is a multi-centre trial?
- 5.1.2. Why use mixed models to analyse multi-centre data?
- 5.2. The Implications of using Different Analysis Models
- 5.2.1. Centre and centre-treatment effects fixed
- 5.2.2. Centre effects fixed, centre-treatment effects omitted
- 5.2.3. Centre and centre treatment effects random
- 5.2.4. Centre effects random, centre-treatment effects omitted
- 5.3. Example: A Multi-Centre Trial
- 5.4. Practical Application and Interpretation
- 5.4.1. Plausibility of a centre-treatment interaction
- 5.4.2. Generalisation
- 5.4.3. Number of centres
- 5.4.4. Centre size
- 5.4.5. Negative variance components
- 5.4.6. Balance
- 5.5. Sample Size Estimation
- 5.5.1. Normal data
- 5.5.2. Non-normal data
- 5.6. Meta-Analysis
- 5.7. Example: Meta-analysis
- 5.7.1. Analyses
- 5.7.2. Results
- 5.7.3. Treatment estimates in individual trials
- 6. Repeated Measures Data
- 6.1. Introduction
- 6.1.1. Reasons for repeated measurements
- 6.1.2. Analysis objectives
- 6.1.3. Fixed effects approaches
- 6.1.4. Mixed models approaches
- 6.2. Covariance Pattern Models
- 6.2.1. Covariance patterns
- 6.2.2. Choice of covariance pattern
- 6.2.3. Choice of fixed effects
- 6.2.4. General points
- 6.3. Example: Covariance Pattern Models for Normal Data
- 6.3.1. Analysis models
- 6.3.2. Selection of covariance pattern
- 6.3.3. Assessing fixed effects
- 6.3.4. Model checking
- 6.4. Example: Covariance Pattern Models for Count Data
- 6.4.1. Analysis models
- 6.4.2. Analysis using a categorical mixed model
- 6.5. Random Coefficients Models
- 6.5.1. Introduction
- 6.5.2. General points
- 6.5.3. Comparisons with fixed effects approaches
- 6.6. Examples of Random Coefficients Models
- 6.6.1. A linear random coefficients model
- 6.6.2. A polynomial random coefficients model
- 6.7. Sample Size Estimation
- 6.7.1. Normal data
- 6.7.2. Non-normal data
- 6.7.3. Categorical data
- 7. Cross-Over Trials
- 7.1. Introduction
- 7.2. Advantages of Mixed Models in Cross-Over Trials
- 7.3. The AB/BA Cross-Over Trial
- 7.3.1. Example: AB/BA cross-over design
- 7.4. Higher Order Complete Block Designs
- 7.4.1. Inclusion of carry-over effects
- 7.4.2. Example: four-period, four-treatment cross-over trial
- 7.5. Incomplete Block Designs
- 7.5.1. The three-treatment, two-period design (Koch's design)
- 7.5.2. Example: two-period cross-over trial
- 7.6. Optimal Designs
- 7.6.1. Example: Balaam's design
- 7.7. Covariance Pattern Models
- 7.7.1. Structured by period
- 7.7.2. Structured by treatment
- 7.7.3. Example: four-way cross-over trial
- 7.8. Analysis of Binary Data
- 7.9. Analysis of Categorical Data
- 7.10. Use of Results from Random Effects Models in Trial Design
- 7.10.1. Example
- 7.11. General Points
- 8. Other Applications of Mixed Models
- 8.1. Trials with Repeated Measurements within Visits
- 8.1.1. Covariance pattern models
- 8.1.2. Example
- 8.1.3. Random coefficients models
- 8.1.4. Example: random coefficients models
- 8.2. Multi-Centre Trials with Repeated Measurements
- 8.2.1. Example: multi-centre hypertension trial
- 8.2.2. Covariance pattern models
- 8.3. Multi-Centre Cross-Over Trials
- 8.4. Hierarchical Multi-Centre Trials and Meta-Analysis
- 8.5. Matched Case-Control Studies
- 8.5.1. Example
- 8.5.2. Analysis of a quantitative variable
- 8.5.3. Check of model assumptions
- 8.5.4. Analysis of binary variables
- 8.6. Different Variances for Treatment Groups in a Simple Between-Patient Trial
- 8.6.1. Example
- 8.7. Estimating Variance Components in an Animal Physiology Trial
- 8.7.1. Sample size estimation for a future experiment
- 8.8. Inter- and Intra-Observer Variation in Foetal Scan Measurements
- 8.9. Components of Variation and Mean Estimates in a Cardiology Experiment
- 8.10. Cluster Sample Surveys
- 8.10.1. Example: cluster sample survey
- 8.11. Small Area Mortality Estimates
- 8.12. Estimating Surgeon Performance
- 8.13. Event History Analysis
- 8.13.1. Example
- 8.14. A Laboratory Study Using a Within-Subject 4 x 4 Factorial Design
- 8.15. Bioequivalence Studies with Replicate Cross-Over Designs
- 8.15.1. Example
- 8.16. Cluster Randomised Trials
- 8.16.1. Example: a trial to evaluate integrated care pathways for treatment of children with asthma in hospital
- 8.16.2. Example: Edinburgh randomised trial of breast screening
- 9. Software for Fitting Mixed Models
- 9.1. Packages for Fitting Mixed Models
- 9.2. Basic use of PROC Mixed
- 9.3. Using SAS to Fit Mixed Models to Non-Normal Data
- 9.3.1. PROC GLIMMIX
- 9.3.2. PROC GENMOD
- Glossary
- References
- Index