Diophantine geometry : an introduction /

Saved in:
Bibliographic Details
Author / Creator:Hindry, Marc.
Imprint:New York : Springer, c2000.
Description:xiii, 558 p. : ill. ; 25 cm.
Language:English
Series:Graduate texts in mathematics. 201
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/4244876
Hidden Bibliographic Details
Other authors / contributors:Silverman, Joseph H., 1955-
ISBN:0387989757
0387989811 (soft cover : alk. paper)
Notes:Includes bibliographical references (p. [504]-519) and index.
Table of Contents:
  • Preface
  • Acknowledgments
  • Contents
  • Detailed Contents for Part A
  • Introduction
  • Part A. The Geometry of Curves and Abelian Varieties
  • A.1. Algebraic Varieties
  • A.2. Divisors
  • A.3. Linear Systems
  • A.4. Algebraic Curves
  • A.5. Abelian Varieties over C
  • A.6. Jacobians over C
  • A.7. Abelian Varieties over Arbitrary Fields
  • A.8. Jacobians over Arbitrary Fields
  • A.9. Schemes
  • Part B. Height Functions
  • B.1. Absolute Values
  • B.2. Heights on Projective Space
  • B.3. Heights on Varieties
  • B.4. Canonical Height Functions
  • B.5. Canonical Heights on Abelian Varieties
  • B.6. Counting Rational Points on Varieties
  • B.7. Heights and Polynomials
  • B.8. Local Height Functions
  • B.9. Canonical Local Heights on Abelian Varieties
  • B.10. Introduction to Arakelov Theory
  • Exercises
  • Part C. Rational Points on Abelian Varieties
  • C.1. The Weak Mordell-Weil Theorem
  • C.2. The Kernel of Reduction Modulo p
  • C.3 Appendix. Finiteness Theorems in Algebraic Number Theory
  • C.4 Appendix. The Selmer and Tate-Shafarevich Groups
  • C.5 Appendix. Galois Cohomology and Homogeneous Spaces
  • Exercises
  • Part D. Diophantine Approximation and Integral Points on Curves
  • D.1. Two Elementary Results on Diophantine Approximation
  • D.2. Roth's Theorem
  • D.3. Preliminary Results
  • D.4. Construction of the Auxiliary Polynomial
  • D.5. The Index Is Large
  • D.6. The Index Is Small (Roth's Lemma)
  • D.7. Completion of the Proof of Roth's Theorem
  • D.8. Application: The Unit Equation U + V = 1
  • D.9. Application: Integer Points on Curves
  • Exercises
  • Part E. Rational Points on Curves of Genus at Least 2
  • E.1. Vojta's Geometric Inequality and Faltings' Theorem
  • E.2. Pinning Down Some Height Functions
  • E.3. An Outline of the Proof of Vojta's Inequality
  • E.4. An Upper Bound for h[subscript Omega](z, w)
  • E.5. A Lower Bound for h[subscript Omega](z, w) for Nonvanishing Sections
  • E.6. Constructing Sections of Small Height I: Applying Riemann-Roch
  • E.7. Constructing Sections of Small Height II: Applying Siegel's Lemma
  • E.8. Lower Bound for h[subscript Omega](z, w) at Admissible (i*[subscript 1], i*[subscript 2]): Version I
  • E.9. Eisenstein's Estimate for the Derivatives of an Algebraic Function
  • E.10. Lower Bound for h[subscript Omega](z, w) at Admissible (i*[subscript 1], i*[subscript 2]): Version II
  • E.11. A Nonvanishing Derivative of Small Order
  • E.12. Completion of the Proof of Vojta's Inequality
  • Exercises
  • Part F. Further Results and Open Problems
  • F.1. Curves and Abelian Varieties
  • F.1.1. Rational Points on Subvarieties of Abelian Varieties
  • F.1.2. Application to Points of Bounded Degree on Curves
  • F.2. Discreteness of Algebraic Points
  • F.2.1. Bogomolov's Conjecture
  • F.2.2. The Height of a Variety
  • F.3. Height Bounds and Height Conjectures
  • F.4. The Search for Effectivity
  • F.4.1. Effective Computation of the Mordell-Weil Group A([kappa])
  • F.4.2. Effective Computation of Rational Points on Curves
  • F.4.3. Quantitative Bounds for Rational Points
  • F.5. Geometry Governs Arithmetic
  • F.5.1. Kodaira Dimension
  • F.5.2. The Bombieri-Lang Conjecture
  • F.5.3. Vojta's Conjecture
  • F.5.4. Varieties Whose Rational Points Are Dense
  • Exercises
  • References
  • List of Notation
  • Index
  • Part A. The Geometry of Curves and Abelian Varieties
  • A.1. Algebraic Varieties
  • A.1.1. Affine and Projective Varieties
  • A.1.2. Algebraic Maps and Local Rings
  • A.1.3. Dimension
  • A.1.4. Tangent Spaces and Differentials
  • A.2. Divisors
  • A.2.1. Weil Divisors
  • A.2.2. Cartier Divisors
  • A.2.3. Intersection Numbers
  • A.3. Linear Systems
  • A.3.1. Linear Systems and Maps
  • A.3.2. Ampleness and the Enriques-Severi-Zariski Lemma
  • A.3.3. Line Bundles and Sheaves
  • A.4. Algebraic Curves
  • A.4.1. Birational Models of Curves
  • A.4.2. Genus of a Curve and the Riemann-Roch Theorem
  • A.4.3. Curves of Genus 0
  • A.4.4. Curves of Genus 1
  • A.4.5. Curves of Genus at Least 2
  • A.4.6. Algebraic Surfaces
  • A.5. Abelian Varieties over C
  • A.5.1. Complex Tori
  • A.5.2. Divisors, Theta Functions, and Riemann Forms
  • A.5.3. Riemann-Roch for Abelian Varieties
  • A.6. Jacobians over C
  • A.6.1. Abelian Integrals
  • A.6.2. Periods of Riemann Surfaces
  • A.6.3. The Jacobian of a Riemann Surface
  • A.6.4. Albanese Varieties
  • A.7. Abelian Varieties over Arbitrary Fields
  • A.7.1. Generalities
  • A.7.2. Divisors and the Theorem of the Cube
  • A.7.3. Dual Abelian Varieties and Poincare Divisors
  • A.8. Jacobians over Arbitrary Fields
  • A.8.1. Construction and Properties
  • A.8.2. The Divisor [Theta]
  • A.8.3 Appendix. Families of Subvarieties
  • A.9. Schemes
  • A.9.1. Varieties over Z
  • A.9.2. Analogies Between Number Fields and Function Fields
  • A.9.3. Minimal Model of a Curve
  • A.9.4. Neron Model of an Abelian Variety