Chemistry of atmospheres : an introduction to the chemistry of the atmospheres of earth, the planets, and their satellites /

Saved in:
Bibliographic Details
Author / Creator:Wayne, Richard P. (Richard Peer)
Edition:3rd ed.
Imprint:Oxford [England] ; New York : Oxford University Press, 2000.
Description:xxix, 775 p. : ill. ; 24 cm.
Language:English
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/4269980
Hidden Bibliographic Details
ISBN:019850375X (pbk.)
Notes:Includes bibliographical references and index.
Table of Contents:
  • 1. Chemical composition: a preliminary survey
  • 1.1. Earth's atmosphere in perspective
  • 1.2. Land, sea, and air
  • 1.3. Particles, aerosols, and clouds
  • 1.4. Ozone
  • 1.5. Cyclic processes
  • 1.5.1. Carbon cycle
  • 1.5.2. Oxygen cycle
  • 1.5.3. Nitrogen cycle
  • 1.5.4. Sulphur cycle
  • 1.6. Linking biosphere and atmosphere
  • 2. Atmospheric behavior as interpreted by physics
  • 2.1. Pressures
  • 2.2. Radiative heating
  • 2.2.1. Solar and planetary radiation
  • 2.2.2. Radiation trapping: the 'greenhouse effect'
  • 2.2.3. Models of radiation trapping and transfer
  • 2.2.4. Trapping in real atmospheres
  • 2.2.5. Unstable greenhouses: Venus, Earth, and Mars compared
  • 2.2.6. Diurnal and seasonal variations
  • 2.3. Temperature profiles
  • 2.3.1. Troposphere, stratosphere, and mesosphere
  • 2.3.2. Thermosphere, exosphere, and escape
  • 2.3.3. Vertical transport
  • 2.4. Winds
  • 2.5. Condensation and nucleation
  • 2.6. Light scattering
  • 3. Photochemistry and kinetics applied to atmospheres
  • 3.1. Photochemical change
  • 3.2. Photochemical primary processes
  • 3.2.1. Photodissociation and photoionization
  • 3.2.2. Reactions of electronically excited species
  • 3.3. Adiabatic processes and the correlation rules
  • 3.4. Chemical kinetics
  • 3.4.1. Bimolecular reactions
  • 3.4.2. Unimolecular and termolecular reactions
  • 3.4.3. Condensed-phase, surface, and heterogeneous reactions
  • 3.4.4. Liquid-phase reactions
  • 3.4.5. Heterogeneous reactions
  • 3.5. Multistep reaction schemes
  • 3.6. Models of atmospheric chemistry
  • 3.6.1. Lifetimes and transport
  • 3.6.2. Modelling and models
  • 3.6.3. Numerical models
  • 3.6.4. Families
  • 4. Ozone in Earth's stratosphere
  • 4.1. Introduction
  • 4.2. Observations
  • 4.3. Oxygen-only chemistry
  • 4.3.1. Reaction scheme
  • 4.3.2. Chapman layers
  • 4.3.3. Comparison of experiment and theory
  • 4.4. Influence of trace constituents
  • 4.4.1. Catalytic cycles
  • 4.4.2. Null cycles, holding cycles, and reservoirs
  • 4.4.3. Natural source sand sinks of catalytic species
  • 4.4.4. Heterogeneous chemistry
  • 4.4.5. Summary of homogeneous chemistry
  • 4.4.6. Comparison of experiment and theory
  • 4.5. Perturbations of the stratosphere
  • 4.5.1. Solar proton events
  • 4.5.2. Solar ultraviolet irradiance
  • 4.5.3. Quasi-biennial oscillation (QBO)
  • 4.5.4. El Nino
  • 4.5.5. Volcanoes
  • 4.6. Man's impact on the stratosphere
  • 4.6.1. Consequences of ozone perturbation
  • 4.6.2. Aircraft
  • 4.6.3. Rockets and the space shttle
  • 4.6.4. Halocarbons: basic chemistry
  • 4.6.5. Halocarbons: loading and ozone depletion potentials
  • 4.6.6. Halocarbons: control, legislation, and alternatives
  • 4.6.7. Halocarbons: future ozone depletions
  • 4.6.8. Nitrous oxide (N2O): agriculture
  • 4.6.9. Combined influences: gases, particles, and climate
  • 4.7. Polar ozone holes
  • 4.7.1. Discovery of abnormal depletion
  • 4.7.2. Special features of polar meteorology
  • 4.7.3. Anomalous chemical composition
  • 4.7.4. Polar stratospheric clouds
  • 4.7.5. Perturbed chemistry
  • 4.7.6. Origin of chlorine compounds dynamics
  • 4.7.7. The Arctic stratosphere
  • 4.7.8. Implications of polar phenomena
  • 4.8. Ozone variations and trends
  • 5. The Earth's troposphere
  • 5.1. Introduction
  • 5.2. Sources, sinks, and transport
  • 5.2.1. Dry and wet deposition
  • 5.2.2. The boundary layer
  • 5.2.3. Transport in the troposphere
  • 5.3. Oxidation and transformation
  • 5.3.1. Photochemical chain initiation
  • 5.3.2. Oxidation steps
  • 5.3.3. Tropospheric ozone production
  • 5.3.4. The importance of NOx
  • 5.3.5. The reaction OH + CO
  • 5.3.6. The nitrate readical
  • 5.3.7. Reactions with ozone
  • 5.4. Biogenic volatile organic compounds
  • 5.4.1. Methane
  • 5.4.2. Non-methane hydrocarbons and other compounds
  • 5.5. Aromatic compounds
  • 5.6. Compounds of sulfur
  • 5.7. Natural halogen-containing species
  • 5.8. Heterogeneous processes and cloud chemistry
  • 5.9. Models, observations, and comparisons
  • 5.9.1. Tropospheric models
  • 5.9.2. Tropospheric measurements of trace species
  • 5.9.3. Comparison of measurements and model predictiosn
  • 5.10.1. Clean and polluted air
  • 5.10.2. Effects of pollution
  • 5.10.3. Primary and secondary pollutants
  • 5.10.4. Sulphur dioxide chemistry
  • 5.10.5. Smoke and sulphur pollution
  • 5.10.6. Acid rain
  • 5.10.7. Photochemical ozone and smog
  • 5.10.8. Degradation of HFCs and HCFCs
  • 5.10.9. Polycyclic aromatic hydrocarbons (PAHs)
  • 5.10.10. Biomass burning
  • 6. Ions in the atmosphere
  • 6.1. Electrical charges in the atmosphere
  • 6.1.1. Aurora
  • 6.1.2. Geomagnetic fluctuations
  • 6.1.3. Radio propagation
  • 6.2. Ion chemistry in the atmosphere
  • 6.3. Ionization mechanisms
  • 6.4. Chemistry of specific regions
  • 6.4.1. F-region processes
  • 6.4.2. E-region processes
  • 6.4.3. D-region positive ion chemistry
  • 6.4.4. D-region negative-ion chemistry
  • 6.5. Ions in the stratosphere and troposphere
  • 7. The airglow
  • 7.1. Optical emission from planetary atmospheres
  • 7.2. Excitation mechanisms
  • 7.3. Airglow intensities and altitude profiles
  • 7.4. Specific emission sources
  • 7.4.1. Atomic and molecular oxygen
  • 7.4.2. Atomic sodium
  • 7.4.3. Hydroxyl radicals
  • 8. Extraterrestrial atmospheres
  • 8.1. Introduction
  • 8.2. Venus
  • 8.2.1. Atmospheric composition
  • 8.2.2. Clouds
  • 8.2.3. Lightning
  • 8.2.4. Sub-cloud chemistry
  • 8.2.5. Stratospheric chemistry
  • 8.3. Mars
  • 8.3.1. Atmospheric structure and composition
  • 8.3.2. Carbon dioxide photochemistry
  • 8.3.3. Ionospheric chemistry
  • 8.4. Jupiter and Saturn
  • 8.5. Titan, Io, Europa, and Callisto
  • 8.6. Uranus, Neptune, Triton, and Pluto
  • 8.7. Comets
  • 9. Evolution and change in atmospheres and climates
  • 9.1. Sources of atmospheric constituents
  • 9.1.1. Origin and development of atmospheres
  • 9.1.2. Interstellar clouds and their chemistry
  • 9.2. Noble gases and nitrogen in planetary atmospheres
  • 9.2.1. Inner planets
  • 9.2.2. Titan
  • 9.3. Isotopic enrichment
  • 9.4. Evolution of Earth's atmosphere
  • 9.5. Climates in the past
  • 9.6. Climates of the future
  • 9.6.1. Radiatively active gases and particles in the atmosphere
  • 9.6.2. Radiative forcing
  • 9.6.3. Feedbacks and models
  • 9.6.4. Detection of twentieth-century climate change
  • 9.6.5. Projected changes in concentrations forcing and climate
  • 9.6.6. Aircraft
  • 9.6.7. Impacts of climate change
  • 9.6.8. Legislation and policy
  • 9.7. A doomed biosphere?
  • Each chapter ends with a Bibliography
  • Index