Chemistry of atmospheres : an introduction to the chemistry of the atmospheres of earth, the planets, and their satellites /
Saved in:
Author / Creator: | Wayne, Richard P. (Richard Peer) |
---|---|
Edition: | 3rd ed. |
Imprint: | Oxford [England] ; New York : Oxford University Press, 2000. |
Description: | xxix, 775 p. : ill. ; 24 cm. |
Language: | English |
Subject: | |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/4269980 |
Table of Contents:
- 1. Chemical composition: a preliminary survey
- 1.1. Earth's atmosphere in perspective
- 1.2. Land, sea, and air
- 1.3. Particles, aerosols, and clouds
- 1.4. Ozone
- 1.5. Cyclic processes
- 1.5.1. Carbon cycle
- 1.5.2. Oxygen cycle
- 1.5.3. Nitrogen cycle
- 1.5.4. Sulphur cycle
- 1.6. Linking biosphere and atmosphere
- 2. Atmospheric behavior as interpreted by physics
- 2.1. Pressures
- 2.2. Radiative heating
- 2.2.1. Solar and planetary radiation
- 2.2.2. Radiation trapping: the 'greenhouse effect'
- 2.2.3. Models of radiation trapping and transfer
- 2.2.4. Trapping in real atmospheres
- 2.2.5. Unstable greenhouses: Venus, Earth, and Mars compared
- 2.2.6. Diurnal and seasonal variations
- 2.3. Temperature profiles
- 2.3.1. Troposphere, stratosphere, and mesosphere
- 2.3.2. Thermosphere, exosphere, and escape
- 2.3.3. Vertical transport
- 2.4. Winds
- 2.5. Condensation and nucleation
- 2.6. Light scattering
- 3. Photochemistry and kinetics applied to atmospheres
- 3.1. Photochemical change
- 3.2. Photochemical primary processes
- 3.2.1. Photodissociation and photoionization
- 3.2.2. Reactions of electronically excited species
- 3.3. Adiabatic processes and the correlation rules
- 3.4. Chemical kinetics
- 3.4.1. Bimolecular reactions
- 3.4.2. Unimolecular and termolecular reactions
- 3.4.3. Condensed-phase, surface, and heterogeneous reactions
- 3.4.4. Liquid-phase reactions
- 3.4.5. Heterogeneous reactions
- 3.5. Multistep reaction schemes
- 3.6. Models of atmospheric chemistry
- 3.6.1. Lifetimes and transport
- 3.6.2. Modelling and models
- 3.6.3. Numerical models
- 3.6.4. Families
- 4. Ozone in Earth's stratosphere
- 4.1. Introduction
- 4.2. Observations
- 4.3. Oxygen-only chemistry
- 4.3.1. Reaction scheme
- 4.3.2. Chapman layers
- 4.3.3. Comparison of experiment and theory
- 4.4. Influence of trace constituents
- 4.4.1. Catalytic cycles
- 4.4.2. Null cycles, holding cycles, and reservoirs
- 4.4.3. Natural source sand sinks of catalytic species
- 4.4.4. Heterogeneous chemistry
- 4.4.5. Summary of homogeneous chemistry
- 4.4.6. Comparison of experiment and theory
- 4.5. Perturbations of the stratosphere
- 4.5.1. Solar proton events
- 4.5.2. Solar ultraviolet irradiance
- 4.5.3. Quasi-biennial oscillation (QBO)
- 4.5.4. El Nino
- 4.5.5. Volcanoes
- 4.6. Man's impact on the stratosphere
- 4.6.1. Consequences of ozone perturbation
- 4.6.2. Aircraft
- 4.6.3. Rockets and the space shttle
- 4.6.4. Halocarbons: basic chemistry
- 4.6.5. Halocarbons: loading and ozone depletion potentials
- 4.6.6. Halocarbons: control, legislation, and alternatives
- 4.6.7. Halocarbons: future ozone depletions
- 4.6.8. Nitrous oxide (N2O): agriculture
- 4.6.9. Combined influences: gases, particles, and climate
- 4.7. Polar ozone holes
- 4.7.1. Discovery of abnormal depletion
- 4.7.2. Special features of polar meteorology
- 4.7.3. Anomalous chemical composition
- 4.7.4. Polar stratospheric clouds
- 4.7.5. Perturbed chemistry
- 4.7.6. Origin of chlorine compounds dynamics
- 4.7.7. The Arctic stratosphere
- 4.7.8. Implications of polar phenomena
- 4.8. Ozone variations and trends
- 5. The Earth's troposphere
- 5.1. Introduction
- 5.2. Sources, sinks, and transport
- 5.2.1. Dry and wet deposition
- 5.2.2. The boundary layer
- 5.2.3. Transport in the troposphere
- 5.3. Oxidation and transformation
- 5.3.1. Photochemical chain initiation
- 5.3.2. Oxidation steps
- 5.3.3. Tropospheric ozone production
- 5.3.4. The importance of NOx
- 5.3.5. The reaction OH + CO
- 5.3.6. The nitrate readical
- 5.3.7. Reactions with ozone
- 5.4. Biogenic volatile organic compounds
- 5.4.1. Methane
- 5.4.2. Non-methane hydrocarbons and other compounds
- 5.5. Aromatic compounds
- 5.6. Compounds of sulfur
- 5.7. Natural halogen-containing species
- 5.8. Heterogeneous processes and cloud chemistry
- 5.9. Models, observations, and comparisons
- 5.9.1. Tropospheric models
- 5.9.2. Tropospheric measurements of trace species
- 5.9.3. Comparison of measurements and model predictiosn
- 5.10.1. Clean and polluted air
- 5.10.2. Effects of pollution
- 5.10.3. Primary and secondary pollutants
- 5.10.4. Sulphur dioxide chemistry
- 5.10.5. Smoke and sulphur pollution
- 5.10.6. Acid rain
- 5.10.7. Photochemical ozone and smog
- 5.10.8. Degradation of HFCs and HCFCs
- 5.10.9. Polycyclic aromatic hydrocarbons (PAHs)
- 5.10.10. Biomass burning
- 6. Ions in the atmosphere
- 6.1. Electrical charges in the atmosphere
- 6.1.1. Aurora
- 6.1.2. Geomagnetic fluctuations
- 6.1.3. Radio propagation
- 6.2. Ion chemistry in the atmosphere
- 6.3. Ionization mechanisms
- 6.4. Chemistry of specific regions
- 6.4.1. F-region processes
- 6.4.2. E-region processes
- 6.4.3. D-region positive ion chemistry
- 6.4.4. D-region negative-ion chemistry
- 6.5. Ions in the stratosphere and troposphere
- 7. The airglow
- 7.1. Optical emission from planetary atmospheres
- 7.2. Excitation mechanisms
- 7.3. Airglow intensities and altitude profiles
- 7.4. Specific emission sources
- 7.4.1. Atomic and molecular oxygen
- 7.4.2. Atomic sodium
- 7.4.3. Hydroxyl radicals
- 8. Extraterrestrial atmospheres
- 8.1. Introduction
- 8.2. Venus
- 8.2.1. Atmospheric composition
- 8.2.2. Clouds
- 8.2.3. Lightning
- 8.2.4. Sub-cloud chemistry
- 8.2.5. Stratospheric chemistry
- 8.3. Mars
- 8.3.1. Atmospheric structure and composition
- 8.3.2. Carbon dioxide photochemistry
- 8.3.3. Ionospheric chemistry
- 8.4. Jupiter and Saturn
- 8.5. Titan, Io, Europa, and Callisto
- 8.6. Uranus, Neptune, Triton, and Pluto
- 8.7. Comets
- 9. Evolution and change in atmospheres and climates
- 9.1. Sources of atmospheric constituents
- 9.1.1. Origin and development of atmospheres
- 9.1.2. Interstellar clouds and their chemistry
- 9.2. Noble gases and nitrogen in planetary atmospheres
- 9.2.1. Inner planets
- 9.2.2. Titan
- 9.3. Isotopic enrichment
- 9.4. Evolution of Earth's atmosphere
- 9.5. Climates in the past
- 9.6. Climates of the future
- 9.6.1. Radiatively active gases and particles in the atmosphere
- 9.6.2. Radiative forcing
- 9.6.3. Feedbacks and models
- 9.6.4. Detection of twentieth-century climate change
- 9.6.5. Projected changes in concentrations forcing and climate
- 9.6.6. Aircraft
- 9.6.7. Impacts of climate change
- 9.6.8. Legislation and policy
- 9.7. A doomed biosphere?
- Each chapter ends with a Bibliography
- Index