Local algebra /

Saved in:
Bibliographic Details
Author / Creator:Serre, Jean Pierre, 1926-
Uniform title:Algèbre locale, multiplicités. English
Imprint:Berlin ; New York : Springer, c2000.
Description:xiii, 128 p. ; 25 cm.
Language:English
Series:Springer monographs in mathematics, 1439-7382
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/4315195
Hidden Bibliographic Details
Other authors / contributors:Chin, CheeWhye.
ISBN:3540666419 (alk. paper)
Notes:Includes bibliographical references (p. [123]-126) and indexes.
Table of Contents:
  • Preface
  • Contents
  • Introduction
  • I. Prime Ideals and Localization
  •  1. Notation and definitions
  •  2. Nakayama's lemma
  •  3. Localization
  •  4. Noetherian rings and modules
  •  5. Spectrum
  •  6. The noetherian case
  •  7. Associated prime ideals
  •  8. Primary decompositions
  • II. Tools
  • A. Filtrations and Gradings
  •  1. Filtered rings and modules
  •  2. Topology defined by a filtration
  •  3. Completion of filtered modules
  •  4. Graded rings and modules
  •  5. Where everything becomes noetherian again - \mathfr {{q}} -adic filtrations
  • B. Hilbert-Samuel Polynomials
  •  1. Review on integer-valued polynomials
  •  2. Polynomial-like functions
  •  3. The Hilbert polynomial
  •  4. The Samuel polynomial
  • III. Dimension Theory
  • A. Dimension of Integral Extensions
  •  1. Definitions
  •  2. Cohen-Seidenberg first theorem
  •  3. Cohen-Seidenberg second theorem
  • B. Dimension in Noetherian Rings
  •  1. Dimension of a module
  •  2. The case of noetherian local rings
  •  3. Systems of parameters
  • C. Normal Rings
  •  1. Characterization of normal rings
  •  2. Properties of normal rings
  •  3. Integral closure
  • D. Polynomial Rings
  •  1. Dimension of the ring A[X 1 , ..., X n ]
  •  2. The normalization lemma
  •  3. Applications. I. Dimension in polynomial algebras
  •  4. Applications. II. Integral closure of a finitely generated algebra
  •  5. Applications. III. Dimension of an intersection in affine space
  • IV. Homological Dimension and Depth
  • A. The Koszul Complex
  •  1. The simple case
  •  2. Acyclicity and functorial properties of the Koszul complex
  •  3. Filtration of a Koszul complex
  •  4. The depth of a module over a noetherian local ring
  • B. Cohen-Macaulay Modules
  •  1. Definition of Cohen-Macaulay modules
  •  2. Several characterizations of Cohen-Macaulay modules
  •  3. The support of a Cohen-Macaulay module
  •  4. Prime ideals and completion
  • C. Homological Dimension and Noetherian Modules
  •  1. The homological dimension of a module
  •  2. The noetherian case
  •  3. The local case
  • D. Regular Rings
  •  1. Properties and characterizations of regular local rings
  •  2. Permanence properties of regular local rings
  •  3. Delocalization
  •  4. A criterion for normality
  •  5. Regularity in ring extensions
  • Appendix I. Minimal Resolutions
  •  1. Definition of minimal resolutions
  •  2. Application
  •  3. The case of the Koszul complex
  • Appendix II. Positivity of Higher Euler-Poincare Characteristics
  • Appendix III. Graded-polynomial Algebras
  •  1. Notation
  •  2. Graded-polynomial algebras
  •  3. A characterization of graded-polynomial algebras
  •  4. Ring extensions
  •  5. Application: the Shephard-Todd theorem
  • V. Multiplicities
  • A. Multiplicity of a Module
  •  1. The group of cycles of a ring
  •  2. Multiplicity of a module
  • B. Intersection Multiplicity of Two Modules
  •  1. Reduction to the diagonal
  •  2. Completed tensor products
  •  3. Regular rings of equal characteristic
  •  4. Conjectures
  •  5. Regular rings of unequal characteristic (unramified case)
  •  6. Arbitrary regular rings
  • C. Connection with Algebraic Geometry
  •  1. Tor-formula
  •  2. Cycles on a non-singular affine variety
  •  3. Basic formulae
  •  4. Proof of theorem 1
  •  5. Rationality of intersections
  •  6. Direct images
  •  7. Pull-backs
  •  8. Extensions of intersection theory
  • Bibliography
  • Index
  • Index of Notation