Phase transition approach to high temperature superconductivity : universal properties of cuprate superconductors /
Saved in:
Author / Creator: | Schneider, T. (Toni) |
---|---|
Imprint: | London : Imperial College Press, c2000. |
Description: | x, 432 p. : ill. ; 23 cm. |
Language: | English |
Subject: | |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/4315217 |
Table of Contents:
- Preface
- 1. Introduction
- 1.1. Cuprate superconductors
- 1.1.1. Structure
- 1.1.2. Doping
- 1.1.3. Effective mass anisotropy and spatial dimensionality
- 1.1.4. Pseudogap
- 1.1.5. Symmetry of the order parameter
- 1.1.6. Importance of critical fluctuations
- 1.2. Universal critical properties of continuous phase transitions
- 1.2.1. Static critical properties at finite temperature
- 1.2.2. Dynamic critical properties at finite temperature
- 1.2.3. Quantum critical properties
- 1.3. Finite size effect and corrections to scaling
- 2. Ginzburg - Landau phenomenology
- 2.1. London phenomenology
- 2.2. Ginzburg - Landau functional
- 2.3. Mean-field treatment
- 2.3.1. Meissner phase
- 2.3.2. Length scales: London penetration depth and correlation length
- 2.3.3. Classification of superconductors
- 2.3.4. Upper critical field
- 2.4. Flux quantization
- 2.5. London model and first flux penetration field
- 2.6. Effective mass anisotropy
- 2.6.1. 3D anisotropic London model
- 3. Gaussian thermal fluctuations
- 3.1. Gaussian fluctuations around the mean field solution
- 3.2. Gaussian order parameter fluctuations
- 3.3. Gaussian vector potential fluctuations
- 3.4. Relevance of vector potential fluctuations
- 3.5. Helicity modulus
- 3.6. Effective mass anisotropy
- 3.7. Fluctuation induced diamagnetism
- 3.7.1. Isotropic system
- 3.7.2. Effective mass anisotropy
- 3.7.3. Magnetic torque
- 4. Superfluidity and the n-vector model
- 4.1. Ideal Bose gas
- 4.2. Charged Bose gas subjected to a magnetic field
- 4.3. Weakly interacting Bose gas
- 4.4. Hydrodynamic approach
- 4.5. The n-vector model
- 5. Universality and scaling theory of classical critical phenomena at finite temperature
- 5.1. Static critical phenomena in isotropic systems
- 5.2. Superconductors with effective mass anisotropy
- 5.3. Dimensional analysis
- 5.3.1. Static critical properties
- 5.3.2. Classical dynamic critical phenomena
- 5.4. Implications of the universal critical amplitude relations
- 6. Experimental evidence for classical critical behavior
- 6.1. Critical behavior close to optimum doping
- 6.1.1. Specific heat in zero field
- 6.1.2. Temperature dependence of the penetration depth
- 6.1.3. Corrections to scaling
- 6.1.4. Temperature dependence of the diamagnetic susceptibility
- 6.1.5. Scaling of the magnetization
- 6.1.6. Crossing point phenomenon
- 6.1.7. Magnetic torque and universal scaling function
- 6.1.8. Magnetic field tuned phase transitions: Melting transition
- 6.1.9. Magnetic field tuned phase transitions: Superconductor - normal conductor and insulator transitions
- 6.1.10. Evidence for a Kosterlitz - Thouless - Berezinskii transition in thin films
- 6.1.11. Temperature driven 2D to 3D crossover
- 6.2. Doping dependence of the critical behavior
- 6.3. Evidence for dynamic scaling
- 6.4. Vortex glass to vortex fluid transition
- 6.5. The (H,T) phase diagram of extreme type II superconductors emerging from Monte Carlo simulations
- 7. Quantum Phase Transitions
- 7.1. Scaling theory of quantum critical phenomena
- 7.2. Quantum critical phenomena: conventional superconductors
- 7.3. Quantum critical phenomena: cuprate superconductors
- 7.3.1. Doping and disorder tuned superconductor to insulator transition
- 7.3.2. Film thickness tuned superconductor to insulator transition
- 7.3.3. Doping dependence of the chemical potential
- 7.3.4. Magnetic field tuned transition
- 7.3.5. Nature of the non-superconducting phase
- 7.3.6. Superconductor to normal conductor transition
- 8. Implications
- 8.1. Interlayer tunneling model
- 8.2. Symmetry of the order parameter
- 8.3. Suppression of the transition temperature due to dimensional crossover and quantum fluctuations
- 8.4. Pseudogap features
- 8.5. Relationship between low frequency conductivity and zero temperature penetration depth
- 8.6. Doping and pressure dependences of critical amplitudes
- 8.7. Doping dependence of isotope and pressure coefficients
- 8.8. Bose gas approach
- 8.9. Effective pair mass
- 8.10. Emerging phase diagrams
- A. Mean field treatment
- A.1. Ising Model
- A.2. XY Model
- B. XY model
- B.1. 3D-2D Crossover in the XY model
- B.1.1. 2D-XY model
- B.1.2. 3D-XY model
- B.1.3. Layered XY model
- B.1.4. Anisotropic XY model
- B.2. Superconducting networks and films
- B.2.1. Models
- B.2.2. Uniform superconducting films
- C. Quantum phase transitions
- C.1. The harmonic oscillator
- C.2. Large-n limit of a model for distortive phase transitions
- C.3. Onset of superfluidity in the ideal Bose gas
- C.4. Superconductors
- D. BCS theory
- D.1. Cooper instability
- D.2. Electron-phonon interaction
- D.3. Ground state in the BCS approximation
- D.4. Thermodynamic properties in the BCS - approximation
- D.5. Simple model
- E. Superconducting properties of the attractive Hubbard model
- E.1. BCS--BEC crossover
- E.2. BCS treatment of the attractive Hubbard model
- E.3. Phase diagram of the attractive Hubbard model on a lattice
- E.4. 2D-XY behavior and KT transition in the attractive Hubbard model
- References
- Index