Phase transition approach to high temperature superconductivity : universal properties of cuprate superconductors /

Saved in:
Bibliographic Details
Author / Creator:Schneider, T. (Toni)
Imprint:London : Imperial College Press, c2000.
Description:x, 432 p. : ill. ; 23 cm.
Language:English
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/4315217
Hidden Bibliographic Details
Other authors / contributors:Singer, J. M.
ISBN:1860942415
Notes:Includes bibliographical references and index.
Table of Contents:
  • Preface
  • 1. Introduction
  • 1.1. Cuprate superconductors
  • 1.1.1. Structure
  • 1.1.2. Doping
  • 1.1.3. Effective mass anisotropy and spatial dimensionality
  • 1.1.4. Pseudogap
  • 1.1.5. Symmetry of the order parameter
  • 1.1.6. Importance of critical fluctuations
  • 1.2. Universal critical properties of continuous phase transitions
  • 1.2.1. Static critical properties at finite temperature
  • 1.2.2. Dynamic critical properties at finite temperature
  • 1.2.3. Quantum critical properties
  • 1.3. Finite size effect and corrections to scaling
  • 2. Ginzburg - Landau phenomenology
  • 2.1. London phenomenology
  • 2.2. Ginzburg - Landau functional
  • 2.3. Mean-field treatment
  • 2.3.1. Meissner phase
  • 2.3.2. Length scales: London penetration depth and correlation length
  • 2.3.3. Classification of superconductors
  • 2.3.4. Upper critical field
  • 2.4. Flux quantization
  • 2.5. London model and first flux penetration field
  • 2.6. Effective mass anisotropy
  • 2.6.1. 3D anisotropic London model
  • 3. Gaussian thermal fluctuations
  • 3.1. Gaussian fluctuations around the mean field solution
  • 3.2. Gaussian order parameter fluctuations
  • 3.3. Gaussian vector potential fluctuations
  • 3.4. Relevance of vector potential fluctuations
  • 3.5. Helicity modulus
  • 3.6. Effective mass anisotropy
  • 3.7. Fluctuation induced diamagnetism
  • 3.7.1. Isotropic system
  • 3.7.2. Effective mass anisotropy
  • 3.7.3. Magnetic torque
  • 4. Superfluidity and the n-vector model
  • 4.1. Ideal Bose gas
  • 4.2. Charged Bose gas subjected to a magnetic field
  • 4.3. Weakly interacting Bose gas
  • 4.4. Hydrodynamic approach
  • 4.5. The n-vector model
  • 5. Universality and scaling theory of classical critical phenomena at finite temperature
  • 5.1. Static critical phenomena in isotropic systems
  • 5.2. Superconductors with effective mass anisotropy
  • 5.3. Dimensional analysis
  • 5.3.1. Static critical properties
  • 5.3.2. Classical dynamic critical phenomena
  • 5.4. Implications of the universal critical amplitude relations
  • 6. Experimental evidence for classical critical behavior
  • 6.1. Critical behavior close to optimum doping
  • 6.1.1. Specific heat in zero field
  • 6.1.2. Temperature dependence of the penetration depth
  • 6.1.3. Corrections to scaling
  • 6.1.4. Temperature dependence of the diamagnetic susceptibility
  • 6.1.5. Scaling of the magnetization
  • 6.1.6. Crossing point phenomenon
  • 6.1.7. Magnetic torque and universal scaling function
  • 6.1.8. Magnetic field tuned phase transitions: Melting transition
  • 6.1.9. Magnetic field tuned phase transitions: Superconductor - normal conductor and insulator transitions
  • 6.1.10. Evidence for a Kosterlitz - Thouless - Berezinskii transition in thin films
  • 6.1.11. Temperature driven 2D to 3D crossover
  • 6.2. Doping dependence of the critical behavior
  • 6.3. Evidence for dynamic scaling
  • 6.4. Vortex glass to vortex fluid transition
  • 6.5. The (H,T) phase diagram of extreme type II superconductors emerging from Monte Carlo simulations
  • 7. Quantum Phase Transitions
  • 7.1. Scaling theory of quantum critical phenomena
  • 7.2. Quantum critical phenomena: conventional superconductors
  • 7.3. Quantum critical phenomena: cuprate superconductors
  • 7.3.1. Doping and disorder tuned superconductor to insulator transition
  • 7.3.2. Film thickness tuned superconductor to insulator transition
  • 7.3.3. Doping dependence of the chemical potential
  • 7.3.4. Magnetic field tuned transition
  • 7.3.5. Nature of the non-superconducting phase
  • 7.3.6. Superconductor to normal conductor transition
  • 8. Implications
  • 8.1. Interlayer tunneling model
  • 8.2. Symmetry of the order parameter
  • 8.3. Suppression of the transition temperature due to dimensional crossover and quantum fluctuations
  • 8.4. Pseudogap features
  • 8.5. Relationship between low frequency conductivity and zero temperature penetration depth
  • 8.6. Doping and pressure dependences of critical amplitudes
  • 8.7. Doping dependence of isotope and pressure coefficients
  • 8.8. Bose gas approach
  • 8.9. Effective pair mass
  • 8.10. Emerging phase diagrams
  • A. Mean field treatment
  • A.1. Ising Model
  • A.2. XY Model
  • B. XY model
  • B.1. 3D-2D Crossover in the XY model
  • B.1.1. 2D-XY model
  • B.1.2. 3D-XY model
  • B.1.3. Layered XY model
  • B.1.4. Anisotropic XY model
  • B.2. Superconducting networks and films
  • B.2.1. Models
  • B.2.2. Uniform superconducting films
  • C. Quantum phase transitions
  • C.1. The harmonic oscillator
  • C.2. Large-n limit of a model for distortive phase transitions
  • C.3. Onset of superfluidity in the ideal Bose gas
  • C.4. Superconductors
  • D. BCS theory
  • D.1. Cooper instability
  • D.2. Electron-phonon interaction
  • D.3. Ground state in the BCS approximation
  • D.4. Thermodynamic properties in the BCS - approximation
  • D.5. Simple model
  • E. Superconducting properties of the attractive Hubbard model
  • E.1. BCS--BEC crossover
  • E.2. BCS treatment of the attractive Hubbard model
  • E.3. Phase diagram of the attractive Hubbard model on a lattice
  • E.4. 2D-XY behavior and KT transition in the attractive Hubbard model
  • References
  • Index