The blue laser diode : the complete story /

Saved in:
Bibliographic Details
Author / Creator:Nakamura, Shuji, 1954-
Edition:2nd updated and extended ed.
Imprint:Berlin ; New York : Springer, 2000.
Description:xvi, 368 p. : ill. (some col) ; 24 cm.
Language:English
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/4337061
Hidden Bibliographic Details
Other authors / contributors:Pearton, S. J.
Fasol, Gerhard.
ISBN:3540665056 (alk. paper)
Notes:Includes bibliographical references (p. 347-360) and index.
Table of Contents:
  • 1. Introduction
  • 1.1. LEDs and LDs
  • 1.2. Group-III Nitride Compound Semiconductors
  • 2. Background
  • 2.1. Introduction
  • 2.2. Applications and Markets for Gallium Nitride Light Emitting Diodes (LEDs) and Lasers
  • 2.3. Who Were the Early Key Players in the Field?
  • 2.4. Why InGaN/AlGaN?
  • 2.5. Key Steps in the Discovery - Materials Issues
  • 2.5.1. Research History of Shuji Nakamura and Selected Steps in the Development of the Commercial Blue GaN LED
  • 2.6. Why Did Nichia Succeed Where Many Much Larger Multinationals and Research Groups Failed?
  • 2.7. Additional Comments on Blue LED Research
  • 2.8. A Short Summary of the Physics of Semiconductor Lasers and LEDs
  • 2.8.1. LEDs
  • 2.8.2. Lasers
  • 3. Physics of Gallium Nitride and Related Compounds
  • 3.1. Introduction
  • 3.2. Crystal Structures
  • 3.2.1. Wurtzite versus Zincblende Structure
  • 3.2.2. Growth of Wurtzite GaN onto Sapphire
  • 3.2.3. Growth of Cubic (Zincblende) GaN
  • 3.2.4. Growth of GaN onto Other Substrates
  • 3.3. Electronic Band Structure
  • 3.3.1. Fundamental Optical Transitions
  • 3.3.2. Band Structure Near the Fundamental Gap
  • 3.3.3. Band Parameters and Band Offsets for GaN, AlN, and InN
  • 3.4. Elastic Properties -Phonons
  • 3.5. Other Properties of Gallium Nitride
  • 3.5.1. Negative Electron Affinity (NEA)
  • 3.5.2. Pyroelectricity
  • 3.5.3. Transferred-Electron Effect (Gunn Effect)
  • 3.6. Summary of Properties
  • 4. GaN Growth
  • 4.1. Growth Methods for Crystalline GaN
  • 4.2. A New Two-Flow Metalorganic Chemical Vapor Deposition System for GaN Growth (TF-MOCVD)
  • 4.3. In Situ Monitoring of GaN Growth Using Interference Effects
  • 4.3.1. Introduction
  • 4.3.2. Experimental Details
  • 4.3.3. GaN Growth Without AlN Buffer Layer
  • 4.3.4. GaN Growth with AlN Buffer Layer
  • 4.3.5. Summary
  • 4.4. Analysis ofReal-Time Monitoring Using Interference Effects
  • 4.4.1. Introduction
  • 4.4.2. Experimental Details
  • 4.4.3. Results and Discussion
  • 4.4.4. Summary
  • 4.5. GaN Growth Using GaN Buffer Layer
  • 4.5.1. Introduction
  • 4.5.2. Experimental Details
  • 4.5.3. Results and Discussion
  • 4.6. In Situ Monitoring and Hall Measurements of GaN Growth with GaN Buffer Layers
  • 4.6.1. Introduction
  • 4.6.2. Experimental Details
  • 4.6.3. Results and Discussion
  • 4.6.4. Summary
  • 5. p-Type GaN Obtained by Electron Beam Irradiation
  • 5.1. Highly p-Type Mg-Doped GaN Films Grown with GaN Buffer Layers
  • 5.1.1. Introduction
  • 5.1.2. Experimental Details
  • 5.1.3. Results and Discussion
  • 5.2. High-Power GaN p-n Junction Blue Light Emitting Diodes
  • 5.2.1. Introduction
  • 5.2.2. Experimental Details
  • 5.2.3. Results and Discussion
  • 5.2.4. Summary
  • 6. n-Type GaN
  • 6.1. Si- and Ge-Doped GaN Films Grown with GaN Buffer Layers
  • 6.2. Experimental Details
  • 6.3. Si Doping
  • 6.4. Ge Doping
  • 6.5. Mobility as a Function ofthe Carrier Concentration
  • 6.6. Summary
  • 7. p-Type GaN
  • 7.1. History of p-Type GaN Research
  • 7.2. Thermal Annealing Effects on p-Type Mg-Doped GaN Films
  • 7.2.1. Introduction
  • 7.2.2. Experimental Details
  • 7.2.3. Results and Discussion
  • 7.2.4. Appendix
  • 7.3. Hole Compensation Mechanism of p-Type GaN Films
  • 7.3.1. Introduction
  • 7.3.2. Experimental Details
  • 7.3.3. Results and Discussion: Explanation of the Hole Compensation Mechanism of p-Type GaN
  • 7.3.4. Summary: Hydrogen Passivation and Annealing of p-Type GaN
  • 7.4. Properties and Effects of Hydrogen in GaN
  • 7.4.1. Present State ofKnowledge
  • 7.4.2. Passivation
  • 7.4.3. Hydrogen in As-Grown GaN
  • 7.4.4. Diffusion of H in Implanted or Plasma-Treated GaN
  • 7.4.5. Summary
  • 8. InGaN
  • 8.1. Introductory Remarks: The Role of Lattice Mismatch
  • 8.2. High-Quality InGaN Films Grown on GaN Films
  • 8.2.1. Introduction: InGaN on GaN
  • 8.2.2. Experimental Details: InGaN on GaN
  • 8.2.3. Results and Discussion: InGaN on GaN
  • 8.2.4. Summary: InGaN on GaN
  • 8.3. Si-Doped InGaN Films Grown on GaN Films
  • 8.3.1. Introduction: Si-Doped InGaN on GaN
  • 8.3.2. Experimental Details: Si-Doped InGaN on GaN
  • 8.3.3. Results and Discussion: Si-Doped InGaN on GaN
  • 8.3.4. Summary: Si-Doped InGaN on GaN
  • 8.4. Cd-Doped InGaN Films Grown on GaN Films
  • 8.4.1. Introduction: Cd-doped InGaN on GaN
  • 8.4.2. Experimental Details
  • 8.4.3. Results and Discussion
  • 8.4.4. Summary: Cd-Doped InGaN
  • 8.5. {{\rm In}}_x{{\rm Ga}}_{{1-x}} {{\rm N}}/{{\rm In}}_y{{\rm Ga}}_{{1-y}}{{\rm N}} Superlattices Grown on GaN Films
  • 8.5.1. Introduction: {{\rm In}}_x{{\rm Ga}}_{{1-x}} {{\rm N}}/{{\rm In}}_y{{\rm Ga}}_{{1-y}}{{\rm N}} Superlattices
  • 8.5.2. Experiments: {{\rm In}}_x{{\rm Ga}}_{{1-x}} {{\rm N}}/{{\rm In}}_y{{\rm Ga}}_{{1-y}}{{\rm N}} Superlattices
  • 8.5.3. Results and Discussion: {{\rm In}}_x{{\rm Ga}}_{{1-x}} {{\rm N}}/{{\rm In}}_y{{\rm Ga}}_{{1-y}}{{\rm N}} Superlattices
  • 8.5.4. Summary: In x Ga 1-x N/In y Ga 1-y N Superlattices
  • 8.6. Growth of {{\rm In}}_x{{\rm Ga}}_{{1-x}}{{\rm N}} Compound Semiconductors and High-Power InGaN/AlGaN Double Heterostructure Violet Light Emitting Diodes
  • 8.6.1. Introduction
  • 8.6.2. Experimental Details
  • 8.6.3. Growth and Properties of {{\rm In}}_x{{\rm Ga}}_{{1-x}}{{\rm N}} Compound Semiconductors
  • 8.6.4. High Power InGaN/AlGaN Double Heterostructure Violet Light Emitting Diodes
  • 8.6.5. Summary
  • 8.7. p-GaN/n-InGaN/n-GaN Double-Heterostructure Blue Light Emitting Diodes
  • 8.7.1. Experimental Details
  • 8.7.2. Results and Discussion
  • 8.7.3. Summary
  • 8.8. High-Power InGaN/GaN Double-Heterostructure Violet Light Emitting Diodes
  • 9. Zn and Si Co-Doped InGaN/AlGaN Double-Heterostructure Blue and Blue-Green LEDs
  • 9.1. Zn-Doped InGaN Growth and InGaN/AlGaN Double-Heterostructure Blue Light Emitting Diodes
  • 9.1.1. Introduction
  • 9.1.2. Experimental Details
  • 9.1.3. Zn-Doped InGaN
  • 9.1.4. InGaN/AlGaN DH Blue LEDs
  • 9.2. Candela-Class High-Brightness InGaN/AlGaN Double-Heterostructure Blue Light Emitting Diodes
  • 9.3. High-Brightness InGaN/AlGaN Double-Heterostructure Blue-Green Light Emitting Diodes
  • 9.4. A Bright Future for Blue-Green LEDs
  • 9.4.1. Introduction
  • 9.4.2. GaN Growth
  • 9.4.3. InGaN
  • 9.4.4. InGaN/AlGaN DH LED
  • 9.4.5. Summary
  • 10. InGaN Single-Quantum-Well LEDs
  • 10.1. High-Brightness InGaN Blue, Green, and Yellow LEDs with Quantum-Well Structures
  • 10.1.1. Introduction
  • 10.1.2. Experimental Details
  • 10.1.3. Results and Discussion
  • 10.1.4. Summary
  • 10.2. High-Power InGaN Single-Quantum-Well Blue and Violet Light Emitting Diodes
  • 10.3. Super-Bright Green InGaN Single-Quantum-Well Light Emitting Diodes
  • 10.3.1. Introduction
  • 10.3.2. Experimental Details
  • 10.3.3. Results and Discussion
  • 10.3.4. Summary
  • 10.4. White LEDs
  • 11. Room-Temperature Pulsed Operation of Laser Diodes
  • 11.1. InGaN-Based Multi-Quantum-Well Laser Diodes
  • 11.1.1. Introduction
  • 11.1.2. Experimental Deatils
  • 11.1.3. Results and Discussion
  • 11.1.4. Summary
  • 11.2. InGaN Multi-Quantum-Well Laser Diodes with Cleaved Mirror Cavity Facets
  • 11.2.1. Introduction
  • 11.2.2. Experimental Details
  • 11.2.3. Results and Discussion
  • 11.2.4. Summary
  • 11.3. InGaN Multi-Quantum-Well Laser Diodes Grown on MgAl 2 O 4 Substrates
  • 11.3.1. Characteristics of InGaN Multi-Quantum-Well Laser Diodes
  • 11.4. The First III-V-Nitride-Based Violet Laser Diodes
  • 11.4.1. Introduction
  • 11.4.2. Experimental Details
  • 11.4.3. Results and Discussion
  • 11.4.4. Summary
  • 11.5. Optical Gain and Carrier Lifetime of InGaN Multi-Quantum-Well Laser Diodes
  • 11.6. Ridge-Geometry InGaN Multi-Quantum-Well Laser Diodes
  • 11.7. Longitudinal Mode Spectra and Ultrashort Pulse Generation of InGaN Multi-Quantum-Well Laser Diodes
  • 12. Emission Mechanisms of LEDs and LDs
  • 12.1. InGaN Single-Quantum-Well (SQW)-Structure LEDs
  • 12.2. Emission Mechanism of SQW LEDs
  • 12.3. InGaN Multi-Quantum-Well (MQW)-Structure LDs
  • 12.4. Summary
  • 13. Room Temperature CW Operation of InGaN MQW LDs
  • 13.1. First Continuous-Wave Operation of InGaN Multi-Quantum-Well-Structure Laser Diodes at 233 K
  • 13.2. First Room-Temperature Continuous-Wave Operation of InGaN Multi-Quantum-Well-Structure Laser Diodes
  • 13.5. RT CW Operation of InGaN MQW LDs with a Long Lifetime
  • 13.6. Blue/Green Semiconductor Laser
  • 13.6.1. Blue/Green LEDs
  • 13.6.2. Bluish-Purple LDs
  • 13.6.3. Summary
  • 13.7. RT CW InGaN MQW LDs with improved Lifetime
  • 14. Latest Results: Lasers with Self-Organized InGaN Quantum Dots
  • 14.1. Introduction
  • 14.2. Fabrication
  • 14.3. Emission Spectra
  • 14.4. Self-Organized InGaN Quantum Dots
  • 14.5. Advances in LEDs
  • 14.6. Advances in Laser Diodes
  • 15. Conclusions
  • 15.1. Summary
  • 15.2. Outlook
  • Appendix
  • Biographies
  • Shuji Nakamura
  • Gerhard Fasol
  • Stephen Pearton
  • References
  • Index