The blue laser diode : the complete story /
Saved in:
Author / Creator: | Nakamura, Shuji, 1954- |
---|---|
Edition: | 2nd updated and extended ed. |
Imprint: | Berlin ; New York : Springer, 2000. |
Description: | xvi, 368 p. : ill. (some col) ; 24 cm. |
Language: | English |
Subject: | |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/4337061 |
Table of Contents:
- 1. Introduction
- 1.1. LEDs and LDs
- 1.2. Group-III Nitride Compound Semiconductors
- 2. Background
- 2.1. Introduction
- 2.2. Applications and Markets for Gallium Nitride Light Emitting Diodes (LEDs) and Lasers
- 2.3. Who Were the Early Key Players in the Field?
- 2.4. Why InGaN/AlGaN?
- 2.5. Key Steps in the Discovery - Materials Issues
- 2.5.1. Research History of Shuji Nakamura and Selected Steps in the Development of the Commercial Blue GaN LED
- 2.6. Why Did Nichia Succeed Where Many Much Larger Multinationals and Research Groups Failed?
- 2.7. Additional Comments on Blue LED Research
- 2.8. A Short Summary of the Physics of Semiconductor Lasers and LEDs
- 2.8.1. LEDs
- 2.8.2. Lasers
- 3. Physics of Gallium Nitride and Related Compounds
- 3.1. Introduction
- 3.2. Crystal Structures
- 3.2.1. Wurtzite versus Zincblende Structure
- 3.2.2. Growth of Wurtzite GaN onto Sapphire
- 3.2.3. Growth of Cubic (Zincblende) GaN
- 3.2.4. Growth of GaN onto Other Substrates
- 3.3. Electronic Band Structure
- 3.3.1. Fundamental Optical Transitions
- 3.3.2. Band Structure Near the Fundamental Gap
- 3.3.3. Band Parameters and Band Offsets for GaN, AlN, and InN
- 3.4. Elastic Properties -Phonons
- 3.5. Other Properties of Gallium Nitride
- 3.5.1. Negative Electron Affinity (NEA)
- 3.5.2. Pyroelectricity
- 3.5.3. Transferred-Electron Effect (Gunn Effect)
- 3.6. Summary of Properties
- 4. GaN Growth
- 4.1. Growth Methods for Crystalline GaN
- 4.2. A New Two-Flow Metalorganic Chemical Vapor Deposition System for GaN Growth (TF-MOCVD)
- 4.3. In Situ Monitoring of GaN Growth Using Interference Effects
- 4.3.1. Introduction
- 4.3.2. Experimental Details
- 4.3.3. GaN Growth Without AlN Buffer Layer
- 4.3.4. GaN Growth with AlN Buffer Layer
- 4.3.5. Summary
- 4.4. Analysis ofReal-Time Monitoring Using Interference Effects
- 4.4.1. Introduction
- 4.4.2. Experimental Details
- 4.4.3. Results and Discussion
- 4.4.4. Summary
- 4.5. GaN Growth Using GaN Buffer Layer
- 4.5.1. Introduction
- 4.5.2. Experimental Details
- 4.5.3. Results and Discussion
- 4.6. In Situ Monitoring and Hall Measurements of GaN Growth with GaN Buffer Layers
- 4.6.1. Introduction
- 4.6.2. Experimental Details
- 4.6.3. Results and Discussion
- 4.6.4. Summary
- 5. p-Type GaN Obtained by Electron Beam Irradiation
- 5.1. Highly p-Type Mg-Doped GaN Films Grown with GaN Buffer Layers
- 5.1.1. Introduction
- 5.1.2. Experimental Details
- 5.1.3. Results and Discussion
- 5.2. High-Power GaN p-n Junction Blue Light Emitting Diodes
- 5.2.1. Introduction
- 5.2.2. Experimental Details
- 5.2.3. Results and Discussion
- 5.2.4. Summary
- 6. n-Type GaN
- 6.1. Si- and Ge-Doped GaN Films Grown with GaN Buffer Layers
- 6.2. Experimental Details
- 6.3. Si Doping
- 6.4. Ge Doping
- 6.5. Mobility as a Function ofthe Carrier Concentration
- 6.6. Summary
- 7. p-Type GaN
- 7.1. History of p-Type GaN Research
- 7.2. Thermal Annealing Effects on p-Type Mg-Doped GaN Films
- 7.2.1. Introduction
- 7.2.2. Experimental Details
- 7.2.3. Results and Discussion
- 7.2.4. Appendix
- 7.3. Hole Compensation Mechanism of p-Type GaN Films
- 7.3.1. Introduction
- 7.3.2. Experimental Details
- 7.3.3. Results and Discussion: Explanation of the Hole Compensation Mechanism of p-Type GaN
- 7.3.4. Summary: Hydrogen Passivation and Annealing of p-Type GaN
- 7.4. Properties and Effects of Hydrogen in GaN
- 7.4.1. Present State ofKnowledge
- 7.4.2. Passivation
- 7.4.3. Hydrogen in As-Grown GaN
- 7.4.4. Diffusion of H in Implanted or Plasma-Treated GaN
- 7.4.5. Summary
- 8. InGaN
- 8.1. Introductory Remarks: The Role of Lattice Mismatch
- 8.2. High-Quality InGaN Films Grown on GaN Films
- 8.2.1. Introduction: InGaN on GaN
- 8.2.2. Experimental Details: InGaN on GaN
- 8.2.3. Results and Discussion: InGaN on GaN
- 8.2.4. Summary: InGaN on GaN
- 8.3. Si-Doped InGaN Films Grown on GaN Films
- 8.3.1. Introduction: Si-Doped InGaN on GaN
- 8.3.2. Experimental Details: Si-Doped InGaN on GaN
- 8.3.3. Results and Discussion: Si-Doped InGaN on GaN
- 8.3.4. Summary: Si-Doped InGaN on GaN
- 8.4. Cd-Doped InGaN Films Grown on GaN Films
- 8.4.1. Introduction: Cd-doped InGaN on GaN
- 8.4.2. Experimental Details
- 8.4.3. Results and Discussion
- 8.4.4. Summary: Cd-Doped InGaN
- 8.5. {{\rm In}}_x{{\rm Ga}}_{{1-x}} {{\rm N}}/{{\rm In}}_y{{\rm Ga}}_{{1-y}}{{\rm N}} Superlattices Grown on GaN Films
- 8.5.1. Introduction: {{\rm In}}_x{{\rm Ga}}_{{1-x}} {{\rm N}}/{{\rm In}}_y{{\rm Ga}}_{{1-y}}{{\rm N}} Superlattices
- 8.5.2. Experiments: {{\rm In}}_x{{\rm Ga}}_{{1-x}} {{\rm N}}/{{\rm In}}_y{{\rm Ga}}_{{1-y}}{{\rm N}} Superlattices
- 8.5.3. Results and Discussion: {{\rm In}}_x{{\rm Ga}}_{{1-x}} {{\rm N}}/{{\rm In}}_y{{\rm Ga}}_{{1-y}}{{\rm N}} Superlattices
- 8.5.4. Summary: In x Ga 1-x N/In y Ga 1-y N Superlattices
- 8.6. Growth of {{\rm In}}_x{{\rm Ga}}_{{1-x}}{{\rm N}} Compound Semiconductors and High-Power InGaN/AlGaN Double Heterostructure Violet Light Emitting Diodes
- 8.6.1. Introduction
- 8.6.2. Experimental Details
- 8.6.3. Growth and Properties of {{\rm In}}_x{{\rm Ga}}_{{1-x}}{{\rm N}} Compound Semiconductors
- 8.6.4. High Power InGaN/AlGaN Double Heterostructure Violet Light Emitting Diodes
- 8.6.5. Summary
- 8.7. p-GaN/n-InGaN/n-GaN Double-Heterostructure Blue Light Emitting Diodes
- 8.7.1. Experimental Details
- 8.7.2. Results and Discussion
- 8.7.3. Summary
- 8.8. High-Power InGaN/GaN Double-Heterostructure Violet Light Emitting Diodes
- 9. Zn and Si Co-Doped InGaN/AlGaN Double-Heterostructure Blue and Blue-Green LEDs
- 9.1. Zn-Doped InGaN Growth and InGaN/AlGaN Double-Heterostructure Blue Light Emitting Diodes
- 9.1.1. Introduction
- 9.1.2. Experimental Details
- 9.1.3. Zn-Doped InGaN
- 9.1.4. InGaN/AlGaN DH Blue LEDs
- 9.2. Candela-Class High-Brightness InGaN/AlGaN Double-Heterostructure Blue Light Emitting Diodes
- 9.3. High-Brightness InGaN/AlGaN Double-Heterostructure Blue-Green Light Emitting Diodes
- 9.4. A Bright Future for Blue-Green LEDs
- 9.4.1. Introduction
- 9.4.2. GaN Growth
- 9.4.3. InGaN
- 9.4.4. InGaN/AlGaN DH LED
- 9.4.5. Summary
- 10. InGaN Single-Quantum-Well LEDs
- 10.1. High-Brightness InGaN Blue, Green, and Yellow LEDs with Quantum-Well Structures
- 10.1.1. Introduction
- 10.1.2. Experimental Details
- 10.1.3. Results and Discussion
- 10.1.4. Summary
- 10.2. High-Power InGaN Single-Quantum-Well Blue and Violet Light Emitting Diodes
- 10.3. Super-Bright Green InGaN Single-Quantum-Well Light Emitting Diodes
- 10.3.1. Introduction
- 10.3.2. Experimental Details
- 10.3.3. Results and Discussion
- 10.3.4. Summary
- 10.4. White LEDs
- 11. Room-Temperature Pulsed Operation of Laser Diodes
- 11.1. InGaN-Based Multi-Quantum-Well Laser Diodes
- 11.1.1. Introduction
- 11.1.2. Experimental Deatils
- 11.1.3. Results and Discussion
- 11.1.4. Summary
- 11.2. InGaN Multi-Quantum-Well Laser Diodes with Cleaved Mirror Cavity Facets
- 11.2.1. Introduction
- 11.2.2. Experimental Details
- 11.2.3. Results and Discussion
- 11.2.4. Summary
- 11.3. InGaN Multi-Quantum-Well Laser Diodes Grown on MgAl 2 O 4 Substrates
- 11.3.1. Characteristics of InGaN Multi-Quantum-Well Laser Diodes
- 11.4. The First III-V-Nitride-Based Violet Laser Diodes
- 11.4.1. Introduction
- 11.4.2. Experimental Details
- 11.4.3. Results and Discussion
- 11.4.4. Summary
- 11.5. Optical Gain and Carrier Lifetime of InGaN Multi-Quantum-Well Laser Diodes
- 11.6. Ridge-Geometry InGaN Multi-Quantum-Well Laser Diodes
- 11.7. Longitudinal Mode Spectra and Ultrashort Pulse Generation of InGaN Multi-Quantum-Well Laser Diodes
- 12. Emission Mechanisms of LEDs and LDs
- 12.1. InGaN Single-Quantum-Well (SQW)-Structure LEDs
- 12.2. Emission Mechanism of SQW LEDs
- 12.3. InGaN Multi-Quantum-Well (MQW)-Structure LDs
- 12.4. Summary
- 13. Room Temperature CW Operation of InGaN MQW LDs
- 13.1. First Continuous-Wave Operation of InGaN Multi-Quantum-Well-Structure Laser Diodes at 233 K
- 13.2. First Room-Temperature Continuous-Wave Operation of InGaN Multi-Quantum-Well-Structure Laser Diodes
- 13.5. RT CW Operation of InGaN MQW LDs with a Long Lifetime
- 13.6. Blue/Green Semiconductor Laser
- 13.6.1. Blue/Green LEDs
- 13.6.2. Bluish-Purple LDs
- 13.6.3. Summary
- 13.7. RT CW InGaN MQW LDs with improved Lifetime
- 14. Latest Results: Lasers with Self-Organized InGaN Quantum Dots
- 14.1. Introduction
- 14.2. Fabrication
- 14.3. Emission Spectra
- 14.4. Self-Organized InGaN Quantum Dots
- 14.5. Advances in LEDs
- 14.6. Advances in Laser Diodes
- 15. Conclusions
- 15.1. Summary
- 15.2. Outlook
- Appendix
- Biographies
- Shuji Nakamura
- Gerhard Fasol
- Stephen Pearton
- References
- Index