Vector spaces and matrices in physics /

Saved in:
Bibliographic Details
Author / Creator:Jain, M. C.
Imprint:Boca Raton : CRC Press ; New Delhi : Narosa Pub. House, c2001.
Description:xi, 183 p. : ill. ; 25 cm.
Language:English
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/4372802
Hidden Bibliographic Details
ISBN:0849309786 (alk. paper)
Notes:Includes index.
Table of Contents:
  • Preface
  • 1.. Introduction
  • 1.1. Abstract Algebraic Systems
  • 1.2. Properties of Binary Operations
  • 1.3. Group
  • 1.4. Field
  • 1.5. Ring
  • 1.6. Functions or Mappings
  • Exercises
  • 2.. Vector Spaces
  • 2.1. Generalization from Physical to Abstract Vectors
  • 2.2. Vector Space
  • 2.3. Subspace
  • 2.4. Linear Combination of Vectors
  • 2.5. Linear Independence and Dependence
  • 2.6. Basis and Dimension: Coordinates
  • 2.7. Isomorphism of Vector Spaces
  • 2.8. Inner Product of Vectors
  • 2.9. Norm (or length) of a Vector
  • 2.10. Distance Between two Vectors
  • 2.11. Schwarz Inequality
  • 2.12. Orthogonality
  • Exercises
  • 3.. Linear Transformations
  • 3.1. Definition
  • 3.2. Equality
  • 3.3. Sum and Scalar Multiple
  • 3.4. Zero Transformation
  • 3.5. Identity Transformation
  • 3.6. Idempotent Transformation
  • 3.7. Nilpotent Transformation
  • 3.8. Nonsingular Transformation
  • 3.9. Orthogonal Transformation
  • Exercises
  • 4.. Basic Matrix Algebra and Special Matrices
  • 4.1. Definition
  • 4.2. Equality
  • 4.3. Sum and Difference of Matrices
  • 4.4. Scalar Multiple of a Martix
  • 4.5. Matrix Multiplication
  • 4.6. Row and Column Vectors
  • 4.7. Transpose of a Matrix
  • 4.8. Conjugate of a Matrix
  • 4.9. Conjugate-Transpose (Hermitian-Conjugate of a Matrix)
  • 4.10. Trace of a Square Matrix
  • 4.11. Determinant of a Square Matrix
  • 4.12. Special Square Matrices
  • 4.13. Adjoint of a Matrix
  • 4.14. Determination of Inverse of a Matrix
  • 4.15. Vector Space of Matrices
  • Exercises
  • 5.. Rank of a Matrix
  • 5.1. Row and column Vectors of a Matrix
  • 5.2. Rank of a Matrix
  • 5.3. Row Space and Column Space of a Matrix
  • 5.4. Elementary Row Operations on a Matrix
  • Exercises
  • 6.. Systems of Linear Equations
  • 6.1. Homogeneous and Nonhomogeneous Linear Systems
  • 6.2. Matrix Form of a Linear System
  • 6.3. Existence and Uniqueness Theorems
  • 6.4. A Practical Method of Solving Linear Systems: Gauss Elimination
  • Exercises
  • 7.. Matrices and Linear Transformations
  • 7.1. Matrix Representation of a Linear Transformation
  • 7.2. Representation of Product of Transformations
  • 7.3. Change of Bases and Similarity Transformation
  • Exercises
  • 8.. Eigenvalues and Eigenvectors of a Matrix
  • 8.1. Eigenvalues and Eigenvectors
  • 8.2. Determination of Eigenvalues and Eigenvectors
  • 8.3. Linear Independence of Eigenvectors
  • 8.4. Eigenvalues and Eigenvectors of Similar Matrices
  • 8.5. Eigenvalues of a Diagonal Matrix
  • 8.6. Hermitian, Skew-Hermitian and Unitary Matrices
  • 8.7. Diagonalization of a Matrix
  • 8.8. Simultaneous Diagonalization and Commutativity
  • 8.9. An Application: Reduction of Coupled Differential Equations to Matrix Eigenvalue Problem
  • Exercises
  • 9.. Caley-Hamilton Theorem. Minimal Polynomial of a Matrix
  • 9.1. Caley-Hamilton Theorem
  • 9.2. Determination of Inverse of a Matrix
  • 9.3. Minimal Polynomial of a Matrix
  • 9.4. A Criterion for Diagonalizability
  • Exercises
  • 10.. Functions of a Matrix
  • 10.1. Power of a Matrix
  • 10.2. Matrix Polynomial
  • 10.3. Matrix Power Series
  • 10.4. Evaluation of Matrix Functions for Diagonalizable Matrices
  • 10.5. Evaluation of Matrix Functions Using Minimal Polynomial
  • Exercises
  • 11.. Bilinear, Quadratic, Hermitian and Skew-Hermitian Forms
  • 11.1. Bilinear Form
  • 11.2. Quadratic Form
  • 11.3. Hermitian (Skew-Hermitian) Form
  • 11.4. Reduction of a Quadratic Form to Canonial Form
  • 11.5. Principal Axes Transformation
  • Exercises
  • Answers/Hints to Exercises
  • Index