Electromagnetic resonances in nonlinear optics /

Saved in:
Bibliographic Details
Author / Creator:Nevière, M.
Imprint:Amsterdam : Gordon & Breach Science Publishers, c2000.
Description:viii, 389 p. : ill. ; 26 cm.
Language:English
Series:Advances in nonlinear optics ; v. 5.
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/4403694
Hidden Bibliographic Details
ISBN:9056993178
Table of Contents:
  • Introduction to the Series
  • Chapter I. Introduction
  • Chapter II. Introduction to Diffraction Grating Theory
  • II.1. Introduction
  • II.2. Grating fundamentals in linear optics
  • II.3. Grating resonances
  • II.4. Gratings in nonlinear optics
  • II.5. Review of the gratings problems in linear optics
  • II.6. Basic principles of rigorous electromagnetic theories in linear grating optics
  • II.6.1. The Rayleigh theory
  • II.6.2. Differential theory
  • II.6.3. The method of Moharam and Gaylord
  • II.6.4. The classical modal method
  • II.6.5. The integral theory
  • II.6.6. The method of coordinate transformation
  • II.6.7. Grating theory user guide
  • Chapter III. Electromagnetic Theory of Nonlinear Optics
  • III.1. Fundamental laws and constitutive relations
  • III.2. Nonlinear polarization in second harmonic generation
  • III.2.1. Dielectrics
  • III.2.2. Metals
  • III.2.3. Undepleted pump approximation
  • III.3. Nonlinear polarization for optical Kerr effect
  • III.4. Propagation equations
  • III.5. Boundary conditions
  • Chapter IV. Rigorous Nonlinear Electromagnetic Theory of Corrugated Dielectric Waveguides
  • IV.1. Theory of undepleted second harmonic generation in corrugated dielectric waveguides
  • IV.1.1. Curvilinear coordinate transformation
  • IV.1.2. The Rayleigh-Fourier method as applied to second harmonic generation
  • IV.1.3. Differential method
  • IV.1.3.1. Solution at the pump frequency [omega]
  • IV.1.3.2. Nonlinear polarization inside the homogeneous region
  • IV.1.3.3. Nonlinear polarization inside the modulated region
  • IV.1.3.4. The field inside the modulated region
  • IV.1.3.5. The field inside the homogeneous nonlinear region
  • IV.1.3.6. The boundary conditions
  • IV.2. Numerical methods for analysis of pump field depletion in second harmonic generation and optical Kerr effect
  • IV.2.1. General considerations
  • IV.2.2. Plane incident wave - the classical differential method
  • IV.2.2.1. Optical Kerr-effect
  • IV.2.2.2. Second-harmonic generation
  • IV.2.3. Waveguide mode propagation: beam-propagation finite-difference method
  • IV.2.4. Waveguide mode propagation: finite-elements method
  • IV.3. Multilayered grating - elimination of numerical instabilities
  • IV.3.1. Errors
  • IV.3.2. Growing exponents and numerical instabilities
  • IV.3.3. Exponential terms inside the corrugated region
  • IV.3.4. S-matrix algorithm
  • Chapter V. Theory of Undepleted Second Harmonic Generation in Relief Metallic Gratings
  • V.1. The surface term of P[superscript NL]
  • V.2. The problem of boundary conditions
  • V.3. The propagation equations
  • V.4. The polarization dependence
  • V.5. The integral method
  • V.6. The differential method
  • Chapter VI. Polology: Phenomenological Approach to (Quasi) Phase Matching
  • VI.1. Introduction
  • VI.2. An interesting example - resonantly enhanced or reduced second-harmonic absorption
  • VI.2.1. Pump wavelength 1.319 [mu]m.
  • VI.2.2. Pump wavelength 1.064 [mu]m.
  • VI.3. Phenomenological approach to electromagnetic resonance effects in linear optics
  • VI.3.1. Scattering matrix
  • VI.3.2. The electromagnetic resonance
  • VI.3.3. The zeros of b[subscript n]
  • VI.3.4. Loci of [delta superscript p](h) and [delta superscript z](h) in the complex [delta]-plane
  • VI.4. Polology in Nonlinear Optics
  • VI.4.1. Second Harmonic Generation
  • VI.4.2. Optical Kerr Effect
  • VI.5. Optimization algorithm for second harmonic generation
  • VI.5.1. An optimization algorithm
  • VI.5.2. Behavior of coupling coefficients
  • VI.5.3. Some limitations and precautions
  • VI.5.4. Numerical examples
  • Chapter VII. Leaky Modes in Nonlinear Optical Resonators
  • VII.1. General considerations
  • VII.2. Different representations of the electromagnetic field in linear planar structures
  • VII.2.1. The longitudinal representation
  • VII.2.2. The transverse representation: guided modes and radiation fields
  • VII.2.3. The transverse representation: orthogonality relations and the equation of evolution of a mode amplitude
  • VII.2.3.1. Demonstration of the Lorentz reciprocity theorem
  • VII.2.3.2. Orthogonality relations
  • VII.2.3.3. Determination of the amplitude of a mode: guided or radiated
  • VII.2.3.4. Equation of evolution of a mode amplitude
  • VII.2.4. The leaky mode representation
  • VII.2.4.1. The leaky modes
  • VII.2.4.2. The different types of modes
  • VII.2.5. Brief summary
  • VII.3. Equation of evolution of a leaky mode amplitude in planar resonators
  • VII.3.1. Evaluation of J[superscript in subscript Q]
  • VII.3.2. Evaluation of J[superscript NL subscript Q]
  • VII.3.2.1. Preliminary considerations
  • VII.3.2.2. Calculation of J[subscript II] and N[subscript II,rad]
  • VII.3.2.3. Calculation of N[subscript Q,rad] when two classes of radiation "modes" are resonantly excited
  • VII.3.3. General equation of evolution of a leaky mode amplitude
  • VII.3.4. The relation between the electromagnetic fields inside and outside the resonator
  • VII.4. Examples
  • VII.4.1. A prism coupler in linear optics
  • VII.4.1.1. Solution in the transverse representation for an incident plane wave
  • VII.4.1.2. Solution in the leaky mode representation
  • VII.4.2. A prism coupler in nonlinear optics
  • VII.4.2.1. Solution in the transverse representation
  • VII.4.2.2. Solution in the leaky mode representation
  • VII.5. Grating structures
  • VII.5.1. Homogeneous solution: general considerations
  • VII.5.2. Equation of evolution of a leaky mode amplitude
  • VII.5.2.1. The in-coupling process
  • VII.5.2.2. The influence of nonlinear polarization
  • VII.5.3. Amplitude of the diffracted orders in the outside media
  • VII.5.4. Extension to the time domain
  • VII.6. General summary
  • Chapter VIII. Linear Distributed Couplers
  • VIII.1. Radiation pattern of distributed couplers in the stationary regime: null points and m-lines
  • VIII.1.1. Near field-pattern and null points
  • VIII.1.2. Far-field pattern and m-line
  • VIII.1.3. Far-field criterium
  • VIII.1.4. Is there a link between the null point and the m-line?
  • VIII.2. Spatio-temporal linear analysis of distributed couplers
  • VIII.2.1. Prism couplers
  • VIII.2.2. Grating couplers
  • Chapter IX. Kerr-Type Leaky Resonators
  • IX.1. Optical bistability
  • IX.1.1. Stationary plane wave study of optical bistability
  • IX.1.1.1. The nonlinear transmission
  • IX.1.1.2. The nonlinear reflection
  • IX.1.2. Diffraction-induced transverse effects due to the finite width of the pump beam
  • IX.1.2.1. General considerations
  • IX.1.2.2. Some comments on the plane wave solution
  • IX.1.2.3. Transverse effects in Kerr-type leaky resonators
  • IX.2.. Spatio-temporal phenomena in Kerr-type leaky resonators
  • IX.2.1. Basic theoretical tools for stability analysis
  • IX.2.2. Plane wave solution in instantaneous Kerr media
  • IX.2.3. Plane wave solution in noninstantaneous Kerr media
  • IX.2.3.1. Linear stability analysis
  • IX.2.3.2. Nonlinear dynamics
  • IX.2.4. Spatio-temporal instabilities in Kerr-type resonators
  • IX.2.4.1. Static modulational instabilities in normal incidence
  • IX.2.4.2. Dynamic modulational instabilities in normal incidence
  • IX.2.4.3. Influence of the angle of incidence
  • Chapter X. Second Harmonic Generation in Leaky Resonators
  • X.1. Second harmonic generation at grating couplers: general results
  • X.1.1. The basic equations
  • X.1.2. Electromagnetic resonances and phase-matching
  • X.2. The undepleted pump plane wave solution
  • X.2.1. The same grating is used for the in-coupling and the resonant excitation of guided modes
  • X.2.1.1. Theoretical results
  • X.2.1.2. Numerical results
  • X.2.2. Nonlinear m-lines at the second harmonic frequency
  • X.2.3. Grating-assisted phase-matching: subwavelength grating
  • X.3. Cerenkov second harmonic generation
  • X.4. Optical bistability/instabilities in [chi superscript 2]-optical resonators
  • X.4.1. Stationary plane wave study of [chi superscript 2]-induced optical bistability
  • X.4.1.1. Second harmonic generation
  • X.4.1.2. Sub/second harmonic generation
  • X.4.2. Instabilities in [chi superscript 2]-optical resonators
  • Appendix A. Curvilinear transformation of coordinate system
  • Appendix B. Propagation equation in TM polarization
  • Appendix C. Propagation equation in TE polarization
  • Appendix D. The multiplicity of the poles
  • Appendix E. Radiation modes and related topics
  • Appendix F. Resonant excitation of two classes of radiation modes
  • Appendix G. Meaning of the spectral width of the resonance curve
  • Appendix H. Hopf bifurcation in leaky resonators described by eqs.IX.47
  • Appendix I. Numerical integration procedure of equations IX.55
  • Index