Quantum scaling in many-body systems /

Saved in:
Bibliographic Details
Author / Creator:Continentino, Mucio A. (Mucio Amado)
Imprint:Singapore : World Scientific, c2001.
Description:xiv, 188 p. : ill. ; 23 cm.
Language:English
Series:World Scientific lecture notes in physics vol. 67
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/4416075
Hidden Bibliographic Details
ISBN:9810243898
Notes:Includes bibliographical references and index.
Table of Contents:
  • Preface
  • Chapter 1. Scaling Theory of Quantum Critical Phenomena
  • 1.1. Quantum Phase Transitions
  • 1.2. Renormalization Group and Scaling Relations
  • 1.3. The Critical Exponents
  • 1.4. Scaling Properties Close to a Zero Temperature Fixed Point
  • 1.4.1. Irrelevant Variables
  • 1.4.2. The Special Role of Time and the Dynamic Exponent
  • 1.4.3. The Correlation Function at T = 0
  • 1.5. Extension to Finite Temperatures
  • 1.5.1. The Crossover Line and the Exponent [phi] = vz
  • 1.5.2. The Critical Line and the Shift Exponent [psi]
  • 1.5.3. Temperature Dependent Behavior at a Quantum Critical Point
  • 1.5.3.1. Naive Scaling
  • 1.5.3.2. General Case
  • Chapter 2. Landau and Gaussian Theories
  • 2.1. Introduction
  • 2.2. Landau Theory of Phase Transitions
  • 2.2.1. Ising Model in a Transverse Field
  • 2.3. Gaussian Approximation (T [ T[subscript c])
  • 2.3.1. Ginzburg Criterion
  • 2.4. Gaussian Approximation (T [ T[subscript c])
  • 2.5. Goldstone Mode
  • Chapter 3. Renormalization Group: the [epsiv]-expansion
  • 3.1. The Landau-Wilson Functional
  • 3.2. The Renormalization Group
  • 3.2.1. Slow Modes
  • 3.2.2. Integration of Fast Modes
  • 3.2.3. Fixed Points
  • 3.2.4. Renormalization Group Flows and Critical Exponents
  • Chapter 4. Quantum Phase Transitions
  • 4.1. Effective Action for a Nearly Ferromagnetic Metal
  • 4.2. The Quantum Paramagnetic-to-Ferromagnetic Transition
  • 4.2.1. Slow Modes
  • 4.2.2. Integration of Fast Modes
  • 4.2.3. A Simplified Cut-off
  • 4.3. Extension to Finite Temperatures
  • 4.4. Effective Action Close to a Spin Density Wave Instability
  • 4.5. Gaussian Effective Actions
  • 4.6. Field-Dependent Free Energy
  • 4.6.1. Gaussian versus Mean-Field at T [not equal] = 0
  • Chapter 5. Real Space Renormalization Group Approach
  • 5.1. Introduction
  • 5.2. The Ising Model in a Transverse Field
  • 5.2.1. Recursion Relations and Fixed Points
  • 5.3. Conclusion
  • Chapter 6. Heavy Fermions
  • 6.1. Introduction
  • 6.2. Scaling Analysis
  • 6.3. Conclusions
  • Chapter 7. A Microscopic Model for Heavy Fermions
  • 7.1. Introduction
  • 7.2. Susceptibility and Wilson Ratio
  • 7.3. Resistivity and Kadowaki-Woods Ratio
  • 7.4. Critical Regime
  • 7.5. Local Regime and One-Parameter Scaling
  • 7.6. Generalized Scaling and the Non-Fermi Liquid Regime
  • 7.6.1. Local Regime at the QCP
  • 7.7. Quantum Lifshitz Point
  • 7.8. Conclusions
  • Chapter 8. Metal-Insulator Transitions
  • 8.1. Conductivity and Charge Stiffness
  • 8.2. Scaling Properties Close to a Metal-Insulator Transition
  • 8.2.1. Charge Stiffness and Conductivity Mass
  • 8.2.2. Thermal Mass
  • 8.3. Different Types of Metal-Insulator Transitions
  • Chapter 9. Density-Driven Metal-Insulator Transitions
  • 9.1. The Simplest Density-Driven Transition
  • 9.1.1. Renormalization Group Approach
  • 9.2. Metal-Insulator Transition in Divalent Metals
  • 9.3. The Excitonic Transition
  • 9.4. The Effect of Electron-Electron Interactions
  • 9.4.1. The Density-Driven MI Transition in the d = 1 Hubbard Model
  • 9.5. Effects of Disorder
  • Chapter 10. Mott Transitions
  • 10.1. Introduction
  • 10.2. Gutzwiller Approach
  • 10.2.1. The Kinetic Energy Term
  • 10.2.1.1. First Gutzwiller's Hopping
  • 10.2.1.2. Second Gutzwiller's Hopping
  • 10.2.1.3. Third and Fourth Gutzwiller's Hoppings
  • 10.2.2. Relevant Limits
  • 10.2.3. Properties of the Solution
  • 10.2.4. Ground State Energy
  • 10.2.5. Calculation of Thermodynamic Quantities
  • 10.2.6. Susceptibility
  • 10.2.7. Nearly Half-Filled Band and Arbitrary U
  • 10.2.8. Chemical Potential and Compressibility for U [less than or equal] U[subscript c]
  • 10.2.9. Chemical Potential for U [greater than or equal] U [subscript c]
  • 10.2.10. Density-Driven Transition
  • 10.3. Scaling Analysis
  • 10.3.1. Correlation Induced or Fixed Density Mott Transition
  • 10.3.2. Density-Driven Mott Transition
  • 10.3.3. Critical Trajectory
  • 10.4. Conclusions
  • Chapter 11. The Non-Linear Sigma Model
  • 11.1. Introduction
  • 11.1.1. Transverse Fluctuations
  • 11.2. The Quantum Non-linear Sigma Model
  • Chapter 12. Fluctuation-Induced Quantum Phase Transitions
  • 12.1. Introduction
  • 12.2. Goldstone Modes and Anderson-Higgs Mechanism
  • 12.3. The Effective Potential
  • 12.4. At the Quantum Critical Point
  • 12.5. The Nature of the Transition
  • 12.6. The Phase Diagram
  • 12.6.1. The Charged Superfluid
  • 12.7. Quantum First Order Transitions
  • Bibliography
  • Index