Laser-aided diagnostics of plasmas and gases /

Saved in:
Bibliographic Details
Author / Creator:Muraoka, Katsunori, 1940-
Uniform title:Rēzā ōyō purazuma keisoku. English
Imprint:Bristol [England] ; Philadelphia : Institute of Physics Pub., c2001.
Description:x, 295 p. : ill. ; 24 cm.
Language:English
Series:Series in plasma physics
Plasma physics series.
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/4446050
Hidden Bibliographic Details
Other authors / contributors:Maeda, Mitsuo, 1942-
ISBN:0750306432
Notes:Includes bibliographical references and index.
Table of Contents:
  • Foreword
  • Part I. Fundamentals
  • 1. Laser-Aided Diagnostics of Gases and Plasmas
  • 1.1. Properties of Gases
  • 1.1.1. Classification of Gaseous States
  • 1.1.2. Fundamental Parameters used to describe Gases
  • 1.2. Properties of Plasmas
  • 1.2.1. Different Areas of Plasma Applications
  • 1.2.2. Fundamental Parameters used to describe Plasmas
  • 1.2.3. Summary
  • 1.3. Different States of Matter and their Kinetic Properties
  • 1.4. Characteristics of Laser Light
  • 1.4.1. Coherence
  • 1.4.2. Short Pulse Generation
  • 1.5. Advantages of Laser-Aided Measurement Methods
  • References
  • 2. Basic Principles of Different Laser-Aided Measurement Techniques
  • 2.1. Interaction of Electromagnetic Waves with Single Particles
  • 2.1.1. Thomson Scattering by Charged Particles
  • 2.1.2. Mie and Rayleigh Scattering
  • 2.1.3. Raman Scattering
  • 2.1.4. Resonant Absorption
  • 2.1.5. Photo-Ionization
  • 2.2. Laser Propagation through Gases and Plasmas
  • 2.2.1. Reflection
  • 2.2.2. Transmission
  • 2.2.3. Refraction
  • 2.2.4. Scattering
  • 2.2.5. Photo-Ionization
  • 2.3. Spectral Profile Measurements
  • 2.3.1. Summary of Line Broadening Mechanisms
  • 2.3.2. Examples of Spectral Widths
  • 2.3.3. Spectral Profile Measurement Techniques
  • References
  • 3. Hardware for Laser Measurements
  • 3.1. Lasers
  • 3.1.1. Overview of Laser Systems
  • 3.1.2. Control of Laser Light
  • 3.1.3. Gas Lasers
  • 3.1.4. Solid-State and Semiconductor Diode Lasers
  • 3.1.5. Tunable Lasers
  • 3.2. Nonlinear Wavelength Conversion Devices
  • 3.2.1. Nonlinear Optical Effects
  • 3.2.2. Higher Harmonic Generation and Frequency Mixing
  • 3.2.3. Optical Parametric Oscillators
  • 3.2.4. Stimulated Scattering
  • 3.3. Optical Elements and Optical Instruments
  • 3.3.1. Dispersion Elements and Spectrometers
  • 3.3.2. Interferometers
  • 3.3.3. Optical Waveguides
  • 3.3.4. Other Optical Elements
  • 3.4. Detectors and Signal Processing
  • 3.4.1. Light Detectors
  • 3.4.2. Imaging Detectors
  • 3.4.3. Noise Sources and Signal Recovery
  • 3.4.4. Observation of Fast Waveforms
  • References
  • Part II. Applications and Measurements
  • 4. Plasma Measurements
  • 4.1. Overview of Plasma Spectroscopic Methods
  • 4.2. Laser-Aided Measurements in High-Temperature Plasmas
  • 4.2.1. Measurement of Plasma Density and Temperature
  • 4.2.2. Measurement of Density and Temperature of Neutral and Impurity Species
  • 4.2.3. Measurement of Electric and Magnetic Fields and Plasma Fluctuations
  • 4.3. Laser-Aided Measurements in Discharge Plasmas
  • 4.3.1. Measurement of Electric Field
  • 4.3.2. Measurement of Electron Density and Temperature
  • 4.3.3. Measurement of Reaction Products
  • References
  • 5. Combustion Measurements
  • 5.1. Combustion Fields and Laser-Aided Measurements
  • 5.1.1. Measurement of Particle Densities
  • 5.1.2. Measurement of Temperature
  • 5.1.3. Measurement of Velocity
  • 5.2. Examples of Combustion Measurements
  • 5.2.1. Measurements by Laser-Induced Fluorescence Spectroscopy
  • 5.2.2. Measurements by Coherent Anti-Stokes Raman Spectroscopy
  • 5.2.3. Measurements by Degenerate Four-Wave Mixing
  • References
  • 6. Measurements in Gas Flow Systems
  • 6.1. Measurement of Refractive Index Changes (Density Measurements)
  • 6.1.1. Schlieren Method
  • 6.1.2. Shadowgraphy
  • 6.1.3. Interferometry
  • 6.1.4. Holography
  • 6.2. Measurement of Flow Velocity
  • 6.2.1. Measurement Techniques
  • 6.2.2. Examples of Measurements
  • 6.3. Imaging of Gas Flows by Laser-Induced Fluorescence
  • 6.3.1. Measurement of Density Distributions
  • 6.3.2. Measurement of Temperature Distributions
  • References
  • 7. Laser Processing Measurements
  • 7.1. Laser Processing
  • 7.2. Measurement Methods in Laser Processing
  • 7.2.1. Different Methods and their Advantages
  • 7.2.2. Detection of Atomic and Molecular Species
  • 7.3. Examples of Laser Processing Measurements
  • 7.3.1. Measurements of Laser CVD Processes
  • 7.3.2. Measurements of Laser Ablation Processes
  • References
  • 8. Analytical Chemistry
  • 8.1. Analytical Chemistry and Laser Spectroscopy
  • 8.2. Examples of Analysis using Laser Spectroscopic Techniques
  • 8.2.1. Analysis using Laser Raman Spectroscopy
  • 8.2.2. Analysis using Laser-Induced Emission Spectroscopy
  • 8.2.3. Analysis using Laser-Induced Fluorescence Spectroscopy
  • 8.2.4. Analysis using Laser Ionization Spectroscopy
  • 8.2.5. Analysis using Laser Photothermal Spectroscopy
  • References
  • 9. Remote Sensing
  • 9.1. LIDAR and Monitoring of the Atmosphere
  • 9.1.1. LIDAR Theory
  • 9.1.2. Different LIDAR Techniques
  • 9.2. Representative LIDAR Experiments
  • 9.2.1. Mie Scattering LIDAR
  • 9.2.2. Rayleigh Scattering LIDAR
  • 9.2.3. Differential Absorption LIDAR (DIAL)
  • 9.2.4. Raman LIDAR
  • References
  • Index