Optical properties of photonic crystals /

Saved in:
Bibliographic Details
Author / Creator:Sakoda, Kazuaki, 1957-
Imprint:Berlin ; New York : Springer, c2001.
Description:xi, 223 p. : ill. ; 24 cm.
Language:English
Series:Springer series in optical sciences, 0342-4111 ; 80
Springer series in optical sciences ; v. 80.
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/4472078
Hidden Bibliographic Details
ISBN:3540411992 (acid-free paper)
Notes:Includes bibliographical references (p. [217]-220) and index.
Table of Contents:
  • 1. Introduction
  • 2. Eigenmodes of Photonic Crystals
  • 2.1. Wave Equations and Eigenvalue Problems
  • 2.2. Eigenvalue Problems in Two-Dimensional Crystals
  • 2.3. Scaling Law and Time Reversal Symmetry
  • 2.4. Photonic Band Calculation
  • 2.4.1. Fourier Expansion of Dielectric Functions
  • 2.4.2. Some Examples
  • 2.5. Phase Velocity, Group Velocity, and Energy Velocity
  • 2.6. Calculation of Group Velocity
  • 2.7. Complete Set of Eigenfunctions
  • 2.8. Retarded GreenÆs Function
  • 3. Symmetry of Eigenmodes
  • 3.1. Group Theory for Two-Dimensional Crystals
  • 3.2. Classification of Eigenmodes in the Square Lattice
  • 3.3. Classification of Eigenmodes in the Hexagonal Lattice
  • 3.4. Group Theory for Three-Dimensional Crystals
  • 3.5. Classification of Eigenmodes in the Simple Cubic Lattice
  • 3.6. Classification of Eigenmodes in the fcc Lattice
  • 4. Transmission Spectra
  • 4.1. Light Transmission and Bragg Reflection
  • 4.2. Field Equations
  • 4.2.1. E Polarization
  • 4.2.2. H Polarization
  • 4.3. Fourier Transform of the Dielectric Function
  • 4.3.1. Square Lattice
  • 4.3.2. Hexagonal Lattice
  • 4.4. Some Examples
  • 4.4.1. Square Lattice
  • 4.4.2. Hexagonal Lattice
  • 4.5. Refraction Law for Photonic Crystals
  • 5. Optical Response of Photonic Crystals
  • 5.1. Solutions of Inhomogeneous Equations
  • 5.2. Dipole Radiation
  • 5.3. Stimulated Emission
  • 5.4. Sum-Frequency Generation
  • 5.4.1. Three-Dimensional Case
  • 5.4.2. Two-Dimensional Case
  • 5.5. SHG in the Square Lattice
  • 5.6. Free Induction Decay
  • 6. Defect Modes in Photonic Crystals
  • 6.1. General Properties
  • 6.2. Principle of Calculation
  • 6.3. Point Defects in a Square Lattice
  • 6.4. Point Defects in a Hexagonal Lattice
  • 6.5. Line Defects in a Square Lattice
  • 6.6. Dielectric Loss and Quality Factor
  • 7. Band Calculation with Frequency-Dependent Dielectric Constants
  • 7.1. Principle of Calculation
  • 7.2. Modified Plane Waves in Metallic Crystals
  • 7.3. Surface Plasmon Polaritons
  • 7.3.1. Plasmon Polaritons on Flat Surface
  • 7.3.2. Plasmon Resonance on a Metallic Cylinder
  • 7.3.3. Symmetry of Plasmon Polaritons
  • 7.3.4. Plasmon Bands in a Square Lattice
  • 8. Photonic Crystal Slabs
  • 8.1. Eigenmodes of Uniform Slabs
  • 8.2. Symmetry of Eigenmodes
  • 8.3. Photonic Band Structure and Transmission Spectra
  • 8.4. Quality Factor
  • 9. Low-Threshold Lasing Due to Group-Velocity Anomaly
  • 9.1. Enhanced Stimulated Emission
  • 9.2. Lasing Threshold
  • 9.2.1. Analytical Expression
  • 9.2.2. Numerical Estimation
  • 10. Quantum Optics in Photonic Crystals
  • 10.1. Quantization of the Electromagnetic Field
  • 10.2. Quadrature-Phase Squeezing
  • 10.3. Interaction Hamiltonian
  • 10.4. Lamb Shift
  • 11. Epilogue
  • References
  • Index