Giant resonances : fundamental high-frequency modes of nuclear excitation /

Saved in:
Bibliographic Details
Author / Creator:Harakeh, M. N.
Imprint:New York : Oxford University Press, 2001.
Description:xv, 638 p. : ill. ; 24 cm.
Language:English
Series:Oxford studies in nuclear physics 24
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/4475067
Hidden Bibliographic Details
Other authors / contributors:Woude, A. van der (Adriaan)
ISBN:0198517335
Notes:Includes bibliographical references (p. [583]-615) and index.
Table of Contents:
  • 1. Introduction
  • 1.1. What is a giant resonance?
  • 1.2. Classification of giant-resonance modes
  • 1.2.1. Macroscopic picture
  • 1.2.2. Microscopic picture
  • 1.3. Historical overview
  • 1.3.1. First evidence for IVGDR excitation
  • 1.3.2. Further systematic studies of the IVGDR
  • 1.3.3. A 'new' giant resonance
  • 1.4. The isoscalar giant resonances
  • 1.4.1. The ISGQR
  • 1.4.2. The isoscalar giant monopole resonance
  • 1.4.3. Other isoscalar multipole strength
  • 1.5. The isovector resonances
  • 1.5.1. The isovector giant quadrupole resonance (IVGQR)
  • 1.5.2. The isovector giant monopole resonance (IVGMR)
  • 1.6. Spin-flip or magnetic resonances
  • 1.6.1. General remarks
  • 1.6.2. The 0h[omega], L = 0 resonances
  • 1.6.3. The 1h[omega], [Delta]L = 1 transitions
  • 1.6.4. M2 strength
  • 1.6.5. 2h[omega] magnetic strength
  • 1.7. Damping of giant resonances
  • 1.7.1. The width [Gamma] of the resonance
  • 1.7.2. Decay of the giant resonance
  • 1.8. Multiphonons
  • 1.9. GRs in hot nuclei
  • 1.10. Special topics
  • 1.10.1. The time scale associated with fission
  • 1.10.2. Neutron skin of nuclei
  • 1.10.3. The incompressibility of nuclear matter
  • 1.10.4. Multipole strength distribution in nuclei with a neutron excess
  • 2. Theoretical frameworks relevant for GR studies
  • 2.1. General concepts and sum rules
  • 2.1.1. Introduction
  • 2.1.2. Transition operators
  • 2.1.3. Transition rates and single-particle units
  • 2.1.4. Sum rules
  • 2.1.5. Transition densities
  • 2.2. Macroscopic models
  • 2.2.1. Surface vibrations
  • 2.2.2. Compression and polarisation modes
  • 2.3. Microscopic models
  • 2.3.1. Hartree-Fock method
  • 2.3.2. Tamm-Dancoff approximation (TDA)
  • 2.3.3. RPA
  • 2.4. Direct reaction theory relevant for GR studies
  • 2.4.1. Introduction
  • 2.4.2. Transition amplitudes
  • 2.4.3. Distorted waves (DWs)
  • 2.4.4. Coupled-channels method and distorted-wave Born approximation
  • 2.4.5. Optical potentials from folding models
  • 2.4.6. Transition potentials: folding and implicit-folding models
  • 3. Experimental methods used in GR studies
  • 3.1. Introduction
  • 3.2. Tools for isoscalar non-spin-flip transitions
  • 3.2.1. Inelastic [alpha] scattering
  • 3.2.2. Inelastic scattering of heavy ions at 30-100 MeV/u bombarding energies
  • 3.2.3. Inelastic proton scattering
  • 3.3. Tools for isovector non-spin-flip excitations
  • 3.3.1. Some general remarks
  • 3.3.2. [gamma]-absorption: real photons
  • 3.3.3. Capture reactions
  • 3.3.4. Absorption of virtual photons: Coulomb excitation
  • 3.3.5. Charge-exchange reactions
  • 3.4. Tools for isoscalar and isovector excitations: (e,e')
  • 3.5. Tools for spin-flip resonances
  • 3.5.1. General remarks
  • 3.5.2. Hadronic probes for spin-flip transitions
  • 3.5.3. The (p,n) reaction
  • 3.5.4. The (n,p) reaction
  • 3.5.5. The ([superscript 3]He, t) reaction
  • 3.5.6. The (t, [superscript 3]He) reaction
  • 4. Properties of isoscalar electric GRs
  • 4.1. Introduction
  • 4.2. The isoscalar giant monopole resonance
  • 4.2.1. Introduction
  • 4.2.2. The data for A [greater than or equal] 90 nuclei
  • 4.2.3. The ISGMR in light nuclei
  • 4.2.4. The ISGMR in light nuclei: concluding remarks
  • 4.3. Isoscalar [Delta]L = 1 strength
  • 4.3.1. Introduction
  • 4.3.2. 1h[omega] isoscalar dipole strength
  • 4.3.3. 3h[omega] isoscalar dipole strength
  • 4.4. The isoscalar giant quadrupole resonance (ISGQR)
  • 4.4.1. Introduction
  • 4.4.2. The ISGQR in A [greater than or equal] 90 nuclei
  • 4.4.3. The ISGQR in 40 [less than or equal] A [ 90 nuclei
  • 4.4.4. The ISGQR in 16 [less than or equal] A [ 40 nuclei
  • 4.4.5. Conclusion
  • 4.5. Isoscalar 3[superscript -] strength
  • 4.5.1. Introduction
  • 4.5.2. 1h[omega] 3[superscript -] strength: LEOR
  • 4.5.3. 3h[omega] 3[superscript -] strength: HEOR
  • 4.5.4. Conclusion
  • 4.6. Isoscalar [Delta]L [greater than or equal] 4 strength
  • 4.7. The effect of deformation on the ISGQR and ISGMR
  • 4.7.1. Introduction
  • 4.7.2. Calculations on the effect of deformation for the ISGMR and ISGQR
  • 4.7.3. Experimental information on the ISGQR and ISGMR strength distributions in deformed nuclei
  • 5. Isovector electric GRs
  • 5.1. Introduction
  • 5.2. The isovector giant monopole resonance (IVGMR)
  • 5.2.1. Introduction
  • 5.2.2. Pion charge-exchange reactions
  • 5.2.3. Heavy-ion charge-exchange reactions
  • 5.2.4. Conclusion
  • 5.3. The isovector giant dipole resonance
  • 5.3.1. Introduction
  • 5.3.2. The giant dipole resonance in A ] 50 nuclei
  • 5.3.3. The IVGDR in light nuclei
  • 5.3.4. Isospin effects
  • 5.4. The isovector giant quadrupole resonance (IVGQR)
  • 5.4.1. Introduction
  • 5.4.2. The IVGQR studied by interference effects in reactions involving photons
  • 5.4.3. The IVGQR in electron scattering
  • 5.4.4. Systematics of the IVGQR
  • 6. Spin-flip transitions in charge-exchange reactions
  • 6.1. Introduction: a qualitative discussion
  • 6.2. The Gamow-Teller resonance: the [tau subscript -] channel
  • 6.2.1. Introduction
  • 6.2.2. The Gamow-Teller sum rule
  • 6.2.3. (p, n) reactions - reaction mechanism
  • 6.2.4. L = 0 strength from 0[degree] (p, n) cross sections
  • 6.2.5. Spin-transfer information from polarisation experiments
  • 6.2.6. The ([superscript 3]He, t) reaction
  • 6.3. The GT resonance: the [tau subscript +] channel
  • 6.3.1. Introduction: the (n, p) and (t, [superscript 3]He) channels
  • 6.3.2. The (n, p) reaction: experimental data
  • 6.4. The 1h[omega] and 2h[omega] spin-flip strength
  • 6.4.1. General features and calculated strength distributions
  • 6.4.2. Problems and probes
  • 6.4.3. The spin-isospin 1h[omega] [Delta]L = 1 strength
  • 6.4.4. The spin-isospin 2h[omega] strength
  • 6.5. Summary and conclusions
  • 6.5.1. The 0h[omega] [Delta]L = 0 transitions
  • 6.5.2. The 1h[omega] [Delta]L = 1 transitions
  • 6.5.3. The evidence for 2h[omega] [Delta]L = 0 1[superscript +] strength
  • 6.5.4. The evidence for 2h[omega] [Delta]L = 2 strength
  • 7. Spin-flip strength from inelastic scattering
  • 7.1. Introduction
  • 7.2. The M1 strength
  • 7.2.1. Orbital and spin modes
  • 7.2.2. The M1 spin-flip modes
  • 7.2.3. The orbital M1 (scissors) mode
  • 7.3. The [Delta]L = 1 spin-flip strength
  • 7.4. Summary and conclusions
  • 8. Decay of GRs
  • 8.1. Introduction
  • 8.2. Theoretical concepts
  • 8.2.1. Compound and direct particle decay, the hybrid model
  • 8.2.2. Direct decay width
  • 8.2.3. Beyond the RPA: damping due to collisions
  • 8.2.4. The escape width in a model with collision damping
  • 8.3. Experiments on particle decay in A [greater than or equal] 90 nuclei
  • 8.3.1. Overview of experiments
  • 8.3.2. Experimental methods
  • 8.3.3. General features of a neutron-decay spectrum
  • 8.3.4. Statistical-model calculations for particle decay
  • 8.3.5. Quasi-free scattering and direct decay
  • 8.3.6. The case of [superscript 208]Pb
  • 8.3.7. Evidence for pre-equilibrium decay
  • 8.4. Other GR decay modes in A [greater than or equal] 90 nuclei
  • 8.4.1. The [gamma]-decay mode
  • 8.4.2. Fission decay of GRs in the actinide region
  • 8.5. Particle decay in A [less than or equal] 90 nuclei
  • 8.5.1. General comments
  • 8.5.2. The decay of the IVGDR in A [ 90 nuclei
  • 8.5.3. The decay of the ISGMR and ISGQR in A [less than or equal] 90 nuclei
  • 8.5.4. [alpha subscript 0] angular correlation functions with emphasis on [superscript 40]Ca; multipole identification and branching ratio
  • 8.6. What did we learn from GR decay experiments?
  • 8.6.1. Main features of decay spectra
  • 8.6.2. Decay experiments and microscopic structure of GRs
  • 8.6.3. Multipole identification from decay experiments
  • 9. Multiphonons
  • 9.1. Introduction
  • 9.1.1. General remarks
  • 9.1.2. The one-dimensional harmonic vibrator
  • 9.2. Double-charge-exchange resonances
  • 9.2.1. General features
  • 9.2.2. Measurements on DCX reactions
  • 9.3. Multiphonon excitation in heavy-ion scattering
  • 9.3.1. Introduction
  • 9.3.2. Experimental observation of the two-phonon ISGQR in [superscript 40]Ca
  • 9.4. Double-IVGDR Coulomb excitation
  • 9.4.1. Cross-section calculations
  • 9.4.2. Evidence for multiphonon excitation from inclusive reactions
  • 9.4.3. Direct observation of the DGDR in heavy-ion collisions
  • 9.4.4. Summary of DGDR experiments in relativistic heavy-ion scattering
  • 9.5. The cross-section problem
  • 9.5.1. The effect of the Pauli principle
  • 9.5.2. A microscopic calculation
  • 9.5.3. Macroscopic models mimicking anharmonic components
  • 9.5.4. Phonon mixing and non-linear effects in the excitation mechanism
  • 9.5.5. Phonon damping and DGDR excitation cross section
  • 9.6. Outlook
  • 10. The giant dipole resonance in hot nuclei
  • 10.1. Introduction
  • 10.1.1. General remarks
  • 10.1.2. Excitation and decay of hot nuclei: general remarks
  • 10.1.3. General features of a [gamma]-decay spectrum
  • 10.2. Formation and decay of the initial system
  • 10.2.1. Introduction
  • 10.2.2. Statistical [gamma]-decay and its relation to particle decay
  • 10.2.3. Formation of compound systems: reaction mechanism and excitation energy
  • 10.3. The dependence of IVGDR parameters on energy and spin
  • 10.3.1. The width of the IVGDR from shape changes and fluctuations
  • 10.3.2. Nucleon-nucleon collisions and the IVGDR width
  • 10.3.3. Nuclear shape and angular distribution of the IVGDR [gamma]-decay
  • 10.3.4. How to distinguish experimentally E[subscript init] and J[subscript init] effects
  • 10.4. Experimental results and their analysis
  • 10.4.1. Introduction
  • 10.4.2. Shape evolution as a function of J
  • 10.4.3. The IVGDR width as a function of the temperature T
  • 10.4.4. A phenomenological function of the IVGDR width [Gamma](T, J, A)
  • 10.4.5. Measurements at very high excitation energies
  • 10.4.6. What did we learn about the IVGDR in hot and fast-rotating nuclei?
  • 11. Some applications of GRs
  • 11.1. IVGDR [gamma]-decay used as a time clock in fission
  • 11.1.1. The problem
  • 11.1.2. Fission delay time extracted from the [superscript 229]Np* [gamma]-spectrum
  • 11.2. The difference in neutron-proton radii, [Delta]R[subscript np]
  • 11.2.1. The challenge
  • 11.2.2. Isospin mixing in the ground state due to [Delta]R[subscript np]
  • 11.2.3. Experimental determination of [Delta]R[subscript np] through ([alpha], [alpha]'): method I
  • 11.2.4. Experimental determination of [Delta]R[subscript np] through charge-exchange reactions: method II
  • 11.3. Isospin mixing at high excitation energies
  • 11.4. Incompressibility of nuclei and nuclear matter
  • 11.4.1. Incompressibility
  • 11.4.2. Nuclear incompressibilities
  • 11.4.3. From nuclear to nuclear-matter incompressibility
  • 11.4.4. Incompressibility and the ISGDR
  • 11.5. Multipole strength functions in unstable nuclei
  • 11.5.1. The quadrupole and dipole response functions for [superscript 28]O
  • 11.5.2. The monopole response in Ca isotopes
  • 11.5.3. Experiments on multipole strength in nuclei with neutron excess
  • Bibliography
  • Index